WORKSHOP

STATE OF CALIFORNIA

ENVIRONMENTAL PROTECTION AGENCY

DEPARTMENT OF TOXIC SUBSTANCES CONTROL

PROPOSED REGULATION OF MERCURY CONTAINING WASTES

JOE SERNA, JR., BUILDING

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

1001 I STREET

CENTRAL VALLEY AUDITORIUM

SACRAMENTO, CALIFORNIA

MONDAY, NOVEMBER 19, 2001

9:00 A.M.

JAMES F. PETERS, CSR, RPR CERTIFIED SHORTHAND REPORTER LICENSE NUMBER 10063

APPEARANCES

DIRECTOR

Edwin Lowry,
Department of Toxic Substances Control

STAFF

Diane Fowler, Public Participation Specialist
Watson Gin, State Regulatory Program Division
Linda Janssen, Public Participation Specialist
Corey Yep, Hazardous Waste Management Program

iii

INDEX

INDEX	PAGE
Opening remarks by Director Lowry	1
Presentaiton by Ms. Yep	8
Remarks by Mr. David Jones	29
PANEL NO. 1	39
Jim Donald, OEHHA Dan Donohoue, ARB	40 49
Loretta Barsamian, S.F. Bay Area Water Quality Control Board	55
Tom Mumley, S.F. Bay Area Water Quality Control Board Tom Howard, Water Resources Control Board	59 64
PANEL NO. 2	71
Lena Brook, Clean Water Action Bill Magavern, Sierra Club Mark Murray, Californians Against Waste	72 84 93
Afternoon Session	103
PANEL NO. 3	
Peter Bleasby, OSRAM Sylvania Pat Sullivan, SCS Engineers Paul Abernathy, Association of Lighting and	106 115
Mercury Recyclers Patricia Becker, Philips Teresa Pichay, California Dental Association Marc Madden, Schnitzer Steel Products Brent Finley, Exponent Eric Almberg, Saftey-Kleen Buttonwillow	134 146 153 167 171 175
Comments From the Floor	186
Jane Williams, California Communities Against Toxics Robert Gillette Bud Hoekstra Peter Weiner	187 202 209 213

iv

INDEX CONTINUED PAGE Comments From the Floor Craig Johns Jody Sparks 218 221 Closing remarks by Director Lowry Adjournment 225 Reporter's Certificate 226

PΙ	3)(CI	ΞE	ŀΒ	Ι	Ν	G	2

- 2 DIRECTOR LOWRY: Well, good morning. My name is
- 3 Ed Lowry. I'm the Director of the Department of Toxic
- 4 Substances Control. Welcome to the Central Valley
- 5 Auditorium and this mercury public workshop. I will have
- 6 a few remarks to kick things off here.
- 7 But before we do that, if Diane Fowler could
- 8 cover a few housekeeping things.
- 9 PUBLIC PARTICIPATION SPECIALIST FOWLER: Good
- 10 morning. The restrooms are -- can everyone hear me?
- 11 There's couple announcements. For those of you
- 12 who have not found them yet, the restrooms are off to
- 13 either side, and there are refreshments downstairs. We
- 14 have a list of restaurants for lunch at the back table.
- 15 We also have the agenda if you have not picked one up.
- 16 And if you would like to speak this afternoon, if you are
- 17 not one of the panelists, we do have speaker request
- 18 forms, if you could fill these out and turn them into me,
- 19 I'd appreciate that.
- 20 We have three panelists. The first will be the
- 21 various boards of the State of California. The second
- 22 panel will be our environmental organizations and they
- 23 will be presenting information. And this afternoon we
- 24 have various speakers from industry.
- 25 And with that, we'll get started.

```
1 Ed.
```

- 2 DIRECTOR LOWRY: All right, thank you. That was
- 3 a good way to start off by saying "um".
- 4 Let me talk a little bit about the purpose of
- 5 this workshop. This is designed to provide a forum for
- 6 discussion and feedback on some concepts for changing the
- 7 mercury regulatory threshold, or other wise changing the
- 8 way we regulate mercury waste within this State.
- 9 It has, as its endpoint, thoughts of putting
- 10 together a regulation based on one or more of the
- 11 recommendations in the report or something completely
- 12 different from the report. And by that I mean in the
- 13 regulatory context I think there is a perhaps well founded
- 14 belief that by the time you actually have a reg package
- 15 out there and public hearings officially on the
- 16 regulations, it is too late for anyone to come into the
- 17 process and actually change what the governmental
- 18 organization is doing about the regulation.
- 19 So with that in mind, what I asked staff at DTSC
- 20 to do is to put out a report with recommendations and then
- 21 invite the public, the regulated community and everyone
- 22 else interested to comment on that report before anyone is
- 23 in entrenched in one particular viewpoint as to what
- 24 direction we should go, if any.
- 25 And that's what you have here. There are copies

1 of the report on the back table, and we also have it on

- 2 our web site, which is easily downloadable in two
- 3 segments.
- 4 As part of this hearing we have asked folks that
- 5 we know who have a stakeholder interest in the process to
- 6 come testify, and by testify I mean to offer comments on
- 7 the report. And it may turn out to be an interactive
- 8 process. I may be able to or may want to interject and
- 9 ask questions for clarification and so forth. We'd like
- 10 to maintain as collegial an atmosphere as we can during
- 11 this process, and I have staff here as well to listen to
- 12 the comments that you all are going to give.
- 13 We have court reporters here for probably two
- 14 reasons. One so that we and the staff can review what is
- 15 said, and, two, we will be posting a transcript of what is
- 16 said here on our web site to give broad dissemination of
- 17 what happens here today.
- In addition, we're holding two other public
- 19 hearings throughout the State or in other places in the
- 20 State later in December, which will address the report.
- 21 Are there two other meetings, I think it is.
- 22 MS. YEP: There are two next month and one in
- 23 January.
- 24 DIRECTOR LOWRY: All right. There are two next
- 25 month and one in January.

1 The objective of our current mercury effort is to

- 2 promote pollution prevention, to encourage recycling and
- 3 to enhance the use of mercury alternatives and discourage
- 4 land disposal. And as you can see the recommendation of
- 5 this report does that by redefining the hazardous waste
- 6 identification criteria for mercury.
- We are endeavoring to provide additional
- 8 safeguards from mercury environmental loading from mercury
- 9 containing waste, which is what we regulate. Now, there
- 10 are different roles and responsibilities of State agencies
- 11 with respect to mercury which probably are not covered in
- 12 detail in the report, but since we have people here from
- 13 these other agencies, I thought I might briefly state what
- 14 they are.
- 15 As you know, DTSC, the Department of Toxic
- 16 Substances Control, regulates hazardous waste. It
- 17 encourages pollution prevention, and it is the Agency's
- 18 primary, although not exclusively, responsible for
- 19 overseeing cleanups of sites which are contaminated with
- 20 hazardous waste.
- 21 The Office of Environmental Health Hazard
- 22 Assessment, or OEHHA, is also here and they are an
- 23 organization which has issued fish advisories and human
- 24 health standards for mercury. The Water Resources Control
- 25 Board, both the State Board and the regional water quality

1 control board protect beneficial uses of water and are

- 2 responsible for establishing total maximum daily loads, or
- 3 what in the business are called TMDLs.
- 4 The Air Resources Board deals in this context
- 5 with mercury emissions in the air. Not speaking today,
- 6 but the Department of Fish and Game is an essential
- 7 partner in our efforts to protect the public health and
- 8 safety from mercury. They collect information from OEHHA
- 9 to determine whether fish advisories are necessary in the
- 10 waters of the state.
- 11 The Department of Health Services oversees
- 12 drinking water criteria and sets maximum concentration
- 13 levels.
- 14 The California Integrated Waste Management Board
- 15 is responsible for managing nonhazardous waste at many
- 16 many disposals sites throughout the State.
- 17 And we have local environmental agencies, often
- 18 referred to as KUPAs, who are responsible in large part
- 19 for implementation of a number of environmental laws and
- 20 regulations, some of which relate to mercury.
- 21 There are several highlights in the report which
- 22 I just want to address a couple. It recognizes and
- 23 identifies that mercury as a persistent and toxic
- 24 pollutant. It bioaccumulates in the environment and in
- 25 the food chain.

1 And for that reason we have had fish advisories

- 2 which exist in many of our recreational waters to the
- 3 point that you can't eat the fish, which live, grow and
- 4 reproduce in many areas of the State.
- 5 The largest source of mercury is legacy waste
- 6 from more than 300 abandoned mines along the California
- 7 Coast Range and in the Sierra Nevada, and in the mountains
- 8 up north. And these have a tremendous impact on the
- 9 mercury load in the water.
- 10 We also have mercury uses in common household and
- 11 industrial products including batteries, paints, and other
- 12 consumer goods. These uses have been reduced or
- 13 eliminated and further restrictions are under
- 14 consideration.
- We also have mercury in fluorescent tubes.
- 16 Everyone of the tubes that is above us in this room have
- 17 small quantities of mercury in them, which enable us to
- 18 see what we're doing.
- 19 We believe our effort here is consistent with the
- 20 latest legislative efforts, other State efforts and
- 21 national efforts. And just to mention one, Senate Bill
- 22 633 passed in the last legislative session and signed by
- 23 the Governor, prohibits the sale of some novelty items
- 24 with mercury, requires one to have a prescription to
- 25 purchase a fever thermometer, and encourages the removal

1 of mercury switches from automobiles. That's covered a

- 2 little bit in our report.
- 3 Some other facts which I think are interesting to
- 4 note, the mercury in one fever thermometer is enough to
- 5 contaminate more than 200 million gallons of water.
- There are accurate and safe alternatives to
- 7 mercury fever thermometers that are readily available and
- 8 comparable in cost. We have an estimated 130 to 180 tons
- 9 of mercury in the hood and trunk switches of automobiles
- 10 currently in use or at automobile recycling yards
- 11 throughout the United States.
- 12 And mercury from consumer products can enter the
- 13 environment and ultimately the states waterways directly
- 14 through vaporization or spillage which broke during use,
- 15 transportation or disposal. The Environmental Council of
- 16 the States, of which our Secretary, Winston Hickox, is a
- 17 member, has passed resolutions regarding mercury and is
- 18 encouraging states to look at the best ways to regulate
- 19 mercury pollution.
- 20 The conclusion or recommendation in the report is
- 21 that we can control additional mercury loading into the
- 22 environment by changing the mercury hazardous waste
- 23 identification criteria, which will promote pollution
- 24 prevention and recycling and the use of mercury
- 25 alternatives and it will also discourage land disposal,

1 and therefore enhance the public health and safety in the

- 2 environment in the State of California.
- 3 Let me reiterate here today that we are
- 4 interested in your input. We want to have a dialogue as
- 5 to what you think about it, what's the best way to go. We
- 6 will have other public hearings as I mentioned, and we
- 7 welcome additional submittals, which can be mailed to us
- 8 at Post Office Box 806, Sacramento, 95812-0806. And, as I
- 9 said earlier, we will have a transcript on our web site.
- 10 Our first presentation will be by Ms. Corey Yep,
- 11 which is sitting to my right. She's in the Hazardous
- 12 Waste Management program with the Department, and is the
- 13 primary author of the report that you have.
- 14 To my left is Watson Gin the Deputy Director for
- 15 our Hazardous Waste Management Program, and he may be
- 16 asking questions, whispering into my ear or tickling me if
- 17 I say anything silly.
- 18 So, Corey, if you would start with your
- 19 presentation.
- 20 (Thereupon an overhead presentation was
- 21 presented as follows.)
- MS. YEP: Okay. Can you all hear me?
- 23 Thank you for coming today. We really appreciate
- 24 your time here and coming today and participating in this
- 25 public workshop.

1 As Ed said, my name is Corey Yep and I've acted

- 2 as project manager for the Department's proposed
- 3 regulation of mercury containing waste. And this is the
- 4 Department's most current effort in regards to controlling
- 5 mercury entering the environment.
- 6 Our objective in this project is to promote
- 7 pollution prevention, recycling, and the use of mercury
- 8 alternatives by redefining how and when we identify
- 9 mercury as a hazardous waste. This will ultimately
- 10 provide additional safeguards from further mercury
- 11 entering the environment. And over time we should see an
- 12 environmental improvement by seeing less discharges to the
- 13 air, water and land.
- 14 The draft mercury report, as Ed has mentioned, is
- 15 available on our web site, and it's back there on the
- 16 table today. And what it does is it lays the base
- 17 foundation for us to move forward with regulations. The
- 18 draft mercury report was truly, truly a team effort. And
- 19 I'd like to recognize the co-authors at this time.
- 20 Andre Algazi and John Low, you can stand or raise
- 21 your hands or something. And so, like I said, it was
- 22 truly a team effort. And I'd also like to recognize the
- 23 many, many individuals in our division program for
- 24 gathering and compiling data for the report, as well as
- 25 those people from our sister agencies who also reviewed

1 the draft mercury report and made comments and which have

- 2 been reflected in what you see today on our web and the
- 3 back table.
- 4 --000--
- 5 MS. YEP: At this point in our project we are at
- 6 the public workshop phase and we are here to create that
- 7 type of dialogue as Ed alluded to with interested parties
- 8 on our options that are in the draft mercury report for
- 9 the proposed mercury containing waste.
- 10 There are four workshops scheduled statewide.
- 11 This being the first, two more in December, Oakland and
- 12 Fresno and -- I'm sorry Oakland and LA, and then in
- 13 January it will be in Fresno.
- 14 And, again, our purpose for these workshops is to
- 15 gather additional information data from the regulated
- 16 sector as well as environmentalists and other regulatory
- 17 agencies.
- 18 --000--
- 19 MS. YEP: Just kind of a quick review of what
- 20 mercury is. Mercury is a persistent bioaccumulative
- 21 substance. And the form that we're most concerned about
- 22 in bioaccumulation is methyl mercury. It does
- 23 bioaccumulate in fish and humans who consume fish, which
- 24 is our primary exposure route.
- 25 Some of the uses that are of mercury, they're

- 1 used in all kinds of devices. As you can see in the
- 2 picture, these are mercury switches, and different types
- 3 of mercury switches. It's also been used in the past as a
- 4 bactericide, fungicide and insecticide. It's still being
- 5 used in some pharmaceutical products.
- 6 It's still being used in industrial processes.
- 7 It's used in Chloroalkalide plants. And, of course, we
- 8 all know we have them in them in our mouth in amalgams.
- 9 And although there are some restrictions on batteries and
- 10 how much mercury is present in batteries, it still is
- 11 present in batteries.
- 12 --000--
- 13 MS. YEP: Some of the State and national efforts
- 14 going on. Water quality criteria, the TMDLs that the
- 15 regional water and State water boards are overseeing, it's
- 16 not only a California effort, it's also a nationwide
- 17 effort. Mercury is a toxic air contaminant, which is
- 18 overseen by our California Air Resources Board.
- 19 And again this is just not a California air
- 20 contaminant. It's a national contaminant.
- 21 Fish consumption advisories, we have a lot of
- 22 them in California, but not only in California they exist
- 23 nationwide. And as far as Ed has mentioned, we have our
- 24 Senate Bill 633, which in California is now making
- 25 restrictions and bans on mercury-containing products and

1 their availability in the consumer market, while these

- 2 efforts are also going on nationwide, especially in the
- 3 north -- I'm sorry, in the New England area.
- 4 So our efforts today are very consistent with our
- 5 sister agencies, other State agencies as well as other
- 6 states and national efforts. And you can find a more
- 7 complete list of the other national efforts in our report.
- 8 --000--
- 9 MS. YEP: So how did we start off this mercury
- 10 and hazardous waste and what's that criteria now? Well,
- 11 in 1977 the Department was charged by the Legislature to
- 12 develop hazardous waste criteria. And in 1977 guidelines
- 13 were initially drafted.
- 14 And I'd like to point out today that Bart Simmons
- 15 is here. He's Mr. CAM. In 1978 they drafted up the
- 16 California Assessment Manual, and those who've been in
- 17 this field for awhile know it as the CAM and he's Mr. CAM.
- 18 In 1982, we did go out with public workshops just
- 19 like we're doing today. In 1984 those regulations were
- 20 finalized. That was 17 years ago. I have a kid 17 years
- 21 old coincidentally. And just as I look forward for my
- 22 child to grow up to be an independent adult, we're looking
- 23 forward for the next stage of these regulations and taking
- 24 a look at how we can change that mercury hazardous waste
- 25 criteria to promote pollution prevention, recycling and

- 1 the use of mercury alternatives and substitutes.
- 2 --000--
- 3 MS. YEP: Just to give you an overview of our
- 4 report. It does provide an overview and a base foundation
- 5 for this proposal. And it provides information on mercury
- 6 in the environment, the existing standards for the
- 7 environmental -- the important forms of mercury in the
- 8 environmental and public health issues, some basic
- 9 information on the mercury chemistry and toxicology.
- 10 It talks about the global mercury cycle, the
- 11 sources of mercury in the environment, some of the common
- 12 uses of mercury and the alternatives available, and it
- 13 provides an assessment of the waste contribution to the
- 14 mercury and the environment. And also it provides options
- 15 on how the Department can control these sources of mercury
- 16 in the environment, and that's also why you're here today
- 17 is to provide us that input.
- 18 --000--
- 19 MS. YEP: So what is our correct criteria? Well,
- 20 one is a Soluble Threshold Limit Concentration or the
- 21 STLC. And It uses a waste extraction test. If you take
- 22 some waste, you take it to the laboratory, they subject it
- 23 to a waste extraction test, which simulates what's
- 24 happening in the landfill in the laboratory environment.
- 25 If it exceeds .2 milligrams per liter, we

1 consider it a hazardous waste, and therefore it falls into

- 2 our realm of regulation. We also have what's called a
- 3 Total Threshold Limit Concentration. Not only do we
- 4 identify in California what is the hazardous waste, what's
- 5 being potentially leached out into the waste, we also
- 6 regulate what's hazardous waste by its total amount of
- 7 mercury in the waste, and that regulatory threshold is 20
- 8 milligrams per kilogram.
- 9 ---00--
- 10 MS. YEP: Well, at the federal level, there are
- 11 also criteria that apply to mercury, and they have what's
- 12 called a Toxicity Characteristic Leaching Procedure.
- 13 Coincidentally, it's the same regulatory threshold, but
- 14 it's a slightly different method to arrive at -- to derive
- 15 what's potentially going to be leached in that waste.
- They also have what's called listed waste. And
- 17 here we have what we call the commercial chemical
- 18 products, and they like to letter or number their wastes.
- 19 And the mercury is U151. And they also have industrial
- 20 process waste, that's specifically waste from mercury cell
- 21 processes in the chlorine production.
- 22 So if the waste meets this description by virtue
- 23 of it being on this list, no analysis is necessary. It
- 24 doesn't need to be sent to a lab, and it automatically
- 25 falls into a category of a hazardous waste.

1 --000--

- 2 MS. YEP: Once the waste is identified as a
- 3 hazardous waste, it follows along with all the
- 4 responsibilities commonly known as the "cradle to grave"
- 5 responsibility. And as far as management, we have, what I
- 6 consider, full hazardous waste management, you know, the
- 7 whole nine yards. We have the EPA ID number, we have the
- 8 storage limits, we have you can't transport that waste
- 9 without using a registered transporter. It has to go to a
- 10 permitted treatment storage or disposal facility.
- 11 And then we also have what's called universal
- 12 waste management standards. These are something
- 13 relatively new. And what it does is create alternatives
- 14 for our full hazardous waste management standards. And it
- 15 typically allows relaxed requirements for the storage,
- 16 collection and transportation activities in hazardous
- 17 waste management.
- 18 --000--
- 19 MS. YEP: Ultimately, at some point, as much as
- 20 we try to recycle, promote pollution prevention, source
- 21 reduction, some of this waste does go to land. And what
- 22 we're concerned about in waste disposal is the direct land
- 23 contamination as one of the concerns. There are other
- 24 considerations such as surface runoff, direct exposure to
- 25 workers, but, you know, direct land contamination is going

- 1 to be in inevitable.
- 2 We are also concerned in landfill disposal of the
- 3 potential to leak and leach mercury, which is why we have
- 4 our STLC or waste extraction test. And of recent concern
- 5 is mercury in landfill gases. A recent study in Florida
- 6 has detected mercury compounds in landfill gas and
- 7 suggests that the landfill gas may be a larger emissions
- 8 source than previously believed.
- 9 --000--
- 10 MS. YEP: When we talk about landfill disposal,
- 11 we have basically two options, hazardous waste landfill
- 12 disposal and nonhazardous waste landfill disposal. And
- 13 our hazardous waste disposal is in facilities. We do have
- 14 leachate collection systems, but no landfill gases are
- 15 generated, because no volatiles or putrescible wastes are
- 16 accepted so that we have no reason to generate landfill
- 17 gas.
- 18 Whereas, in our Class 3 or nonhazardous waste
- 19 land disposal landfill facilities, we do have criteria now
- 20 that any new Class 3 landfill require base liners and
- 21 leachate collection systems, but the majority of our
- 22 landfills in California don't have these.
- 23 And in a solid waste assessment test report,
- 24 about 70 percent of the landfills were leaking outside
- 25 their limits. However, any mercury that was detected,

- 1 none of that was over any beneficial use criteria.
- Now, we mentioned A recent study and our concern
- 3 of finding mercury in landfill gases. Well, in California
- 4 in 1993 there was a requirement to collect landfill gas in
- 5 wells to either flare or prefer energy recovery in our
- 6 nonhazardous waste landfills. About half of our 275 Class
- 7 3 landfills do have landfill gas collection systems.
- 8 --000--
- 9 MS. YEP: So how much mercury do we really expect
- 10 to be originating from the waste? Before I can really
- 11 talk about that, let's kind of give you an idea of where
- 12 we are with just mercury as a material.
- 13 Well, since the advent of human activity, there
- 14 has been an estimated three-fold increase of mercury
- 15 circulating in the environment. And currently there is no
- 16 new mercury coming in from mining sources. That is,
- 17 they're all coming from our secondary sources from
- 18 recycling sources.
- 19 And, in addition, our supply of mercury has
- 20 exceeded our demand, so we can expect the declining
- 21 amounts of mercury originating from waste partly due from
- 22 the reduced demand for mercury, which has a direct effect
- 23 because we've been banning mercury uses in some of our
- 24 consumer products. And also our manufacturers are doing
- 25 some voluntary source reduction.

1 However, still there is more being deposited on

- 2 land and emitted in any other media.
- 3 --000--
- 4 MS. YEP: The amount of mercury coming in from
- 5 waste sources in the air in 2000 was estimated to be
- 6 almost one and a half tons. This data was generated from
- 7 the Air Resources Board, and it includes things such as
- 8 waste burning fluorescent tube light breakage,
- 9 incinerators, sewage treatment, co-gen plants, landfills
- 10 and a number of -- a couple of other sources.
- 11 --000--
- 12 MS. YEP: The amount of water sources, amount of
- 13 mercury waste coming in from contaminated potential water
- 14 sources, the report takes a look at what's coming out of
- 15 the dental arena. And about a half a ton of mercury from
- 16 dental amalgam is entering our publicly owned treatment
- 17 works in 2000.
- 18 That came from the mercury headworks analysis for
- 19 2000 in Palo Alto, the study down there. Given that there
- 20 is about a 90 percent efficiency at the POTWs over 100
- 21 pounds still enter California's waters.
- --000--
- 23 MS. YEP: The San Francisco Bay Regional Water
- 24 Quality Control Board has been a real mover and shaker in
- 25 their TMDL efforts and produced a comprehensive report, in

- 1 which does point out that there's about 22 to up to 200,
- 2 almost 300 pounds of mercury from fluorescent light tubes
- 3 potentially breaking in landfills and going into the air
- 4 and potentially being deposited into the San Francisco
- 5 Bay.
- 6 And they do acknowledge, and we also acknowledge
- 7 that the primary water pollution source is emanating from
- 8 legacy waste.
- 9 --000--
- 10 MS. YEP: As far as what kind of mercury waste is
- 11 going to land disposal, we looked at a couple of areas.
- 12 One, the most recent projection was for 2000 was put out
- 13 by U.S. EPA, and the national projection was over 170
- 14 tons.
- 15 What we did in our report was take a population
- 16 based percentage and took 12 percent of 170 tons and
- 17 projected that in 2000. We had almost 21 tons of mercury
- 18 hitting our landfills, and included items such as the
- 19 batteries, lighting, paint, thermometers, thermostats, et
- 20 cetera.
- 21 --000--
- 22 MS. YEP: What we then try to do is try to narrow
- 23 down that number and do some comparison. And we did some
- 24 mercury projections just from the fluorescent lamps. In
- 25 2001, we're projecting, and these figures came from the

1 National Electrical Manufacturing Association, about 1.3

- 2 tons of mercury originating in fluorescent lamps versus
- 3 something that U.S. EPA put together for the national
- 4 level.
- 5 They projected so much tons of mercury emanating
- 6 from fluorescent lamps. And what we did again here was
- 7 kind of prorate it for California, and we came up with
- 8 almost five tons. Now, the differences is here could be
- 9 because, at the time of the projection, the universal
- 10 waste rule at the federal level was in place, so this was
- 11 actually the estimated potential landfill disposal.
- 12 --000--
- 13 MS. YEP: What we also tried to do in making our
- 14 projections on what could be hitting our landfills was to
- 15 try to narrow down what's coming out of the dental arena.
- 16 In 2000, 2.2 tons of mercury from amalgams, dental
- 17 amalgams, were generated for disposal or recycling. And
- 18 that does not include the mercury from amalgam entering
- 19 the POTWs.
- Now, granted this is generated, we don't know if
- 21 it's hitting the landfills. My gut feeling is that most
- 22 of our dentists are recycling this amalgam just for the
- 23 silver value.
- In that same study from the U.S. EPA, and again
- 25 taking the national level and projecting it to what it

1 would have been for California, we projected about .3 tons

- 2 being disposed in California landfills. And, again, some
- 3 of our data gaps is that we don't really know if this is
- 4 true or not, but it is a national projection that we did
- 5 do and apply it to California in lieu of any other data.
- --000--
- 7 MS. YEP: This year the Department had an auto
- 8 shredder initiative. And what we found from the auto
- 9 shredder initiative that over 700,000 automobiles were
- 10 shredded in California. Each automobile potentially has
- 11 two mercury switches, each containing half a gram to one
- 12 gram of mercury.
- 13 So potentially we have three-quarters to one and
- 14 a half tons of mercury in auto shredder waste. What we
- 15 also did was go out and sample, and found that
- 16 approximately 300,000 tons of auto shredder wastes are
- 17 generated each year in California.
- 18 Now, remember the mercury we found in the auto
- 19 shredder waste doesn't exceed our mercury Soluble
- 20 Threshold Limit Concentration or Total Threshold Limit
- 21 Concentration. It's not hazardous for mercury.
- 22 But what our analytical testing does show that we
- 23 have potentially almost one ton of mercury in that auto
- 24 shredder waste. And given that 47 percent of that
- 25 feedstock are from automobiles, it's calculated that about

1 .4 tons of mercury in the auto shredder waste came from

- 2 automobiles, which does kind of raise the question of
- 3 where did the other, what, half ton to one ton of mercury
- 4 go, whether it went to the air or whatever?
- 5 --000--
- 6 MS. YEP: So we do know that fish consumption
- 7 advisories exist for California in California waters, and
- 8 we do know that many other states and national efforts are
- 9 ongoing to reduce and control and eliminate mercury in the
- 10 environment. And we do know that additional mercury
- 11 containing wastes entering the environment can be avoided.
- 12 --000--
- 13 MS. YEP: So what our report recommends is that
- 14 we're promoting pollution prevention and the use of
- 15 mercury alternatives and recycling by redefining the
- 16 hazardous waste criteria, which will then provide those
- 17 additional safeguards in the mercury loading into the
- 18 environment.
- 19 ---00--
- 20 MS. YEP: The report recommends on how we might
- 21 be able to accomplish this by listing all mercury
- 22 containing waste, the use of universal waste management
- 23 standards where applicable or where it makes most sense,
- 24 Class 1 disposal, and phased implementation, meaning that
- 25 we might build some time in here to develop the

1 infrastructure for collection and recycling, to allow time

- 2 for phasing in the use of substitutes for mercury.
- 3 --000--
- 4 MS. YEP: So what else did we actually think
- 5 about when we came up with our report recommendation?
- 6 Well, we did think about lists, as I just
- 7 mentioned, listing everything no matter what the source.
- 8 We also thought about just listing the intentionally added
- 9 mercury containing wastes, meaning that it would
- 10 essentially leave out the naturally occurring waste
- 11 sources. And we thought about just listing discarded
- 12 consumer products. And with our nonconsumer products
- 13 utilize our existing STLC and TTLC levels.
- 14 We also thought about the possibility of
- 15 developing a new regulatory threshold. And, of course,
- 16 there's also the do nothing aspect.
- 17 ---00--
- 18 MS. YEP: Once we've identified a waste as a
- 19 hazardous mercury containing waste, we looked at what kind
- 20 of hazardous waste management options we could utilize.
- 21 Of course, our options include the full hazardous
- 22 waste management requirement, so we'll give you the full
- 23 nine yards on how to manage the mercury containing waste.
- 24 We also thought about using universal waste
- 25 management standards where it made sense, phased

1 implementation, not only Class 1 disposal or hazardous

- 2 waste disposal, but also contemplated what are the
- 3 potential impacts of the -- noncontinuing to dispose at a
- 4 nonhazardous waste class landfill.
- 5 So how this all kind of plays out, it's sort of
- 6 like we have -- I'm sorry, the potential waste being
- 7 affected. We have identified in the report some types of
- 8 waste being affected, one being the automobile and
- 9 appliances, the auto shredder wastes, which we have some
- 10 data on, the quote unquote, "nonhazardous" fluorescent
- 11 lenses, toys, games, novelty items, they are going to be
- 12 eventually banned in California from being sold.
- We also have mercury painted debris that we've
- 14 identified as a potential waste being affected. We are
- 15 familiar with lead painted debris. Well, mercury was used
- 16 in the paint as fungicide, and it could be potentially
- 17 affected.
- 18 We have ashes, sewage sludge, contaminated soil
- 19 not excluding mining waste and mercury containing
- 20 measuring devices that are potentially affected.
- 21 --000--
- MS. YEP: So how does this kind of play out?
- 23 Well, we have -- this is kind of the pick one from column
- 24 A and pick one or more from column B. Pick one from
- 25 Column A on how we identify hazardous waste and one or

1 more from how we want to manage that hazardous waste in

- 2 column B.
- 3 --000--
- 4 MS. YEP: So to give you an example how this
- 5 might work is that if we regulate all mercury containing
- 6 wastes as a hazardous waste, the Department could
- 7 recognize the existing exclusion and exemptions for a
- 8 sample of the mining and the industrial waste waters in
- 9 the Clean Water Act. But it would include any detectable
- 10 amount of mercury in waste, whether it was naturally
- 11 occurring or intentionally added.
- 12 The management option would be the Class 1
- 13 disposal. And another management option that could be
- 14 incorporated into this example is that we would include
- 15 universal waste management standards for consumer
- 16 products, toys, games, lights and to facilitate the
- 17 collection and recycling.
- 18 And these management standards could be as
- 19 flexible as we would like it to be or waste stream
- 20 specific, the performance versus prescriptive standard.
- 21 --000--
- MS. YEP: Also, we would consider under a
- 23 management option the phased implementation. So those
- 24 wastes where we site new technologies that are not
- 25 available, we need to just wait until such a technology

- 1 was available before we would enforce this.
- 2 And this phase of the implementation also allowed
- 3 time for switching from mercury to nonmercury containing
- 4 products and allowed time to develop an infrastructure for
- 5 collection, storage and recycling.
- --000--
- 7 MS. YEP: Now, although we've mentioned Class 1
- 8 disposal, we do have another option here, alternative
- 9 disposal. We could use the STLC and the TTLC to determine
- 10 some disposal options, and may apply it to the soil, ashes
- 11 and sludges. And this would allow either Class 1, 2 or 3
- 12 landfill disposal.
- --000--
- MS. YEP: To kind of give you an idea how this
- 15 might play out, disposal at Class 1, 2 or 3 landfills,
- 16 whatever landfill you choose, has to be lined with a
- 17 leachate collection system. And the current STLC and TTLC
- 18 would be the determining factor in the Class 1 landfill
- 19 disposal.
- 20 And waste that wouldn't exceed the STLC or TTLC
- 21 would have the option to be disposed at our two or three
- 22 or a nonhazardous waste landfill.
- 23 And if you so choose to be on the conservative
- 24 side, if you're thinking about future liability, you can
- 25 still always choose Class 1 landfill disposal.

1	- 0 -	
- 1	000-	

- MS. YEP: Another example of how this might play
- 3 out in identifying mercury hazardous waste, this is to
- 4 regulate all intentionally added mercury containing waste.
- 5 And what this would exclude or not include is the
- 6 naturally occurring mercury and soils, ashes and sludges.
- 7 However, it does presume knowledge on the
- 8 generator where that mercury originated from. And the
- 9 other management options would be similar to what we just
- 10 talked about.
- 11 --000--
- 12 MS. YEP: Another example is that how to identify
- 13 a mercury containing waste and how we would pose to change
- 14 it is and what we would consider is regulating all mercury
- 15 containing consumer products when discarded.
- Now, this would identify devices such as the toys
- 17 being mercury switches or the components. It would
- 18 capture things like cars, barometers and appliances and
- 19 all nonconsumer products discards would be compared to our
- 20 existing criteria the STLC and the TTLC.
- 21 --000--
- MS. YEP: And, again, our management options
- 23 would include universal waste management standards for
- 24 those things that make the most sense. If we already have
- 25 an existing mechanism to collect fluorescent lights, it

1 just makes sense to continue to see how other things might

- 2 apply to those existing standards.
- 3 Phase implementation considerations. We might
- 4 make a difference between whether you're a consumer and
- 5 whether you're industry, and how we might phase the
- 6 implementation.
- 7 --00--
- 8 MS. YEP: And then it does -- the phase
- 9 implementation would allow time to switch from the mercury
- 10 to nonmercury products and to also allow us some time to
- 11 develop an infrastructure if needed.
- 12 --000--
- 13 MS. YEP: So what we need from you today is some
- 14 information, your input on some of the volumes that might
- 15 be generated, the waste types impacted other than
- 16 identified in the report, the kinds of concentrations
- 17 we're looking at in mercury and products in waste, is
- 18 there a capacity to treat and dispose and recycle, what
- 19 are the impacts of our options that we're contemplating to
- 20 you and your ideas on how to change the threshold to still
- 21 accomplish our objective to promote pollution prevention,
- 22 use of alternatives and recycling.
- 23 DIRECTOR LOWRY: All right.
- Thank you.
- 25 What we'd like to do now is to start off with our

1 first panel of commenters. And they're in the first row

- 2 in front of me to my -- well, the agenda does have EPA
- 3 speaking first. Do we have -- I didn't know that David
- 4 Jones was here, is he here?
- 5 All right, good. David is the Waste Management
- 6 Division Associate Director for Region 9 U.S. EPA. He's
- 7 been with EPA 28 years in permitting and enforcement and
- 8 Superfund and waste management programs, Bachelor and
- 9 Masters degree in Chemical Engineering from Cornell
- 10 University, so he's well qualified to talk us.
- 11 Why don't you give us U.S. EPA's perspective,
- 12 then we will see the State agency's perspective.
- 13 Thank you.
- 14 U.S. EPA WASTE MANAGEMENT DIVISION ASSOCIATE
- 15 DIRECTOR JONES: Thank you.
- You know understanding mercury and how it cycles
- 17 through the environment has really increased dramatically
- 18 over just the last ten years and EPA's concern about
- 19 mercury in the environment has probably increased
- 20 proportional to that increased knowledge.
- 21 As you heard from my brief introduction, I've
- 22 been with the EPA a long time. In the early seventies we
- 23 were writing NPDS permits and the machines only read in
- 24 the parts per million. EPA had that with the federal
- 25 register notice for what it thought was the most toxic

1 chemicals in the United States were. They only had six on

- 2 the list, because machines didn't read like they do today.
- I think it was cadmium, chromium, DDT phenyl
- 4 cyanide and mercury. I know mercury was one of them. And
- 5 we thought in those days you just wrote a permit limit on
- 6 it and it was fine and the world would be great.
- 7 And in the last five years, EPA has had an
- 8 intensive effort on about 28 persistent bioaccumulate and
- 9 toxic substances, we'll call it our PBT initiative, really
- 10 just trying to get a handle on how we can address these
- 11 things that are really a global problem. A lot of them
- 12 cycle in the air in a global way. A piece of literature I
- 13 read said they drop out. Mercury sort of goes around like
- 14 a grasshopper, it changes form and then hops somewhere
- 15 else.
- 16 The elemental form can be in the environment in
- 17 the air for three years before it comes down. Mercury
- 18 oxide will probably come down in the first rain. So you
- 19 have a lot of different forms of mercury, and we didn't
- 20 even know methyl mercury existed that much just, you know,
- 21 10, 15 years ago.
- 22 So, first, I want to thank DTSC for this report.
- 23 It is extremely well written. It has clear, crisp
- 24 summaries, and a lot of options and you made it easy for
- 25 me. So I really appreciate that, and also for the wide

- 1 range of options. I appreciate everybody being here at
- 2 this time, like you mentioned before, you've really gotten
- 3 into the thick of things.
- And, of course, we wholeheartedly endorse the
- 5 goals which are pollution prevention and recycling and
- 6 alternatives to mercury. So what I wanted to focus on a
- 7 little bit was actually some of the soil issues which I
- 8 know are not the focus of this report.
- 9 In the last ten years part of my job is the EPA
- 10 Superfund program. And I have the Clear Lake -- I've got
- 11 about 60 sites in my branch, and one was the sulfur bank
- 12 mine in Clearlake which was mercury mining. Then I have
- 13 the Carson River mercury site, which was historical gold
- 14 and silver mining contaminated soil for mercury.
- 15 And when I look at mercury, I think of the future
- 16 and legacy mercury. And there's really a big difference.
- 17 I think for the present and the future, we just have to
- 18 try to take any source of present air emissions of any
- 19 significance whatsoever and try to eliminate it.
- 20 And we can do our part, coal power plants can do
- 21 their part. The biggest mercury emitters still in the
- 22 world are some zinc smelters in Indonesia and Finland and
- 23 some of the southeast Asian countries. We'll have to
- 24 figure out how to deal with that. But eventually, we want
- 25 to have mercury be like lead where we can look years later

- 1 and say hey it actually is measurably less in the
- 2 environment. We have to stop putting more in as a
- 3 starting place.
- 4 And that's where, you know, the Air Board will be
- 5 doing its part. That's part of the EPA's emphasis with
- 6 its mercury strategy or first PBT strategy should be
- 7 coming out soon and it's for mercury, a laundry list of
- 8 issues, many of them regulatory, many of them voluntary,
- 9 many of them advocating consumer controls on mercury,
- 10 which I think will be much easier to do at the local or
- 11 State level than the federal level. So I really like the
- 12 emphasis of this report in looking at creative, flexible,
- 13 cost effective ways to deal with that.
- 14 So the DTSC, besides the Air Board, is doing its
- 15 job and hopefully us doing ours on the consumer products,
- 16 like a fluorescent light bulb. I'll get to landfills in a
- 17 second. Irrespective of what kind of landfill it makes it
- 18 too, they break on their way. And that's the mercury air
- 19 emissions source. And if mercury air emissions is the
- 20 biggest thing we should be reducing immediately, then that
- 21 is really something the type of consumer product or the
- 22 switches in automobiles where that can be released.
- You know, the shredders, I presume, the blades
- 24 are fairly hot when you're shredding metal, and it may be
- 25 that there is a significant air source. We have no doubt

1 it doesn't seem to have a problem with the toxicity tests

- 2 for land.
- 3 But those are the types we should be looking at,
- 4 anything that can be contributing now to air, I think, is
- 5 something that we've really got to look at.
- 6 For the legacy goal, I worked a lot of
- 7 contaminated soil issues in the Carson River for elemental
- 8 mercury. Now, Corey and I were just at a mercury, mining,
- 9 rivers conference Thursday in Nevada City. And that area
- 10 up there, there are 26 million pounds of mercury put into
- 11 slough boxes. And that mercury is still around in many
- 12 forums, mostly elemental mercury.
- 13 In the Carson River Superfund site, our mercury
- 14 cleanup number started around 20, which is actually about
- 15 where the DTSC number is. However, one thing we've
- 16 learned in the last 15 years is how important the species
- 17 of mercury is. In that study what we've determined was
- 18 that mercury chloride and mercury oxide drive the risk
- 19 assessment in terms of human ingestion of soils. And what
- 20 we were worried about was kids playing in the front yards
- 21 in mercury contaminated soil or the backyard.
- But being in that area, kids are ingesting that.
- 23 And so we did extensive risk assessments. And we found
- 24 out that the proper number for cleanup for a Superfund
- 25 site was 20 parts per million per kilogram, if it was

- 1 mercury chloride or oxide.
- But over 90 percent of our mercury in our worst
- 3 case was elemental mercury, and that drove the risk
- 4 assessment up so the number, cleanup number, would be more
- 5 like 80 to 100.
- Now, the reason I emphasize that, is it turns out
- 7 the entire town of Dayton probably was somewhere between
- 8 25 and 40.
- 9 DIRECTOR LOWRY: Is this Dayton, Ohio?
- 10 U.S. EPA WASTE MANAGEMENT DIVISION ASSOCIATE
- 11 DIRECTOR JONES: Dayton in the Carson River Valley, sorry,
- 12 which means that if the number had been 20, they would
- 13 have all had to be really concerned about the front yard
- 14 and we would have had a cleanup action for a whole town.
- 15 With the number of 80, I think there were only three homes
- 16 affected, so we did a really intensive risk assessment
- 17 based on that, and it made a big difference, the species
- 18 of the mercury.
- 19 And one thing you may want to look at is a
- 20 category of determining whether something is a waste based
- 21 on a special category for legacy mercury that's over 90
- 22 percent elemental, you know, to establish a category,
- 23 that's a hypothetical, but to establish a category which
- 24 presumes the mercury in the soil is predominantly
- 25 elemental.

- 1 And you may end up with a number that is
- 2 different than 20 and probably will. And it could make a
- 3 huge world of difference in terms of right now people
- 4 could be regulated, but then they could get exemptions,
- 5 but they're still in a process, and we have to use all our
- 6 creativity and flexibility.
- If you look at that number and look at recent
- 8 risk assessments that are done, and it would only be for
- 9 that category not an industrial facility in San Diego that
- 10 has 40 parts per million mercury and no one around does,
- 11 but it may be that when you get to the Sierra Nevada's
- 12 that you want to establish a category of historical legacy
- 13 mercury in soils and have a different number. And the
- 14 reason -- the conference Corey and I were at, I think we
- 15 were the only two speakers that did not show a picture of
- 16 Green Horn Creek.
- 17 And the reason is it's an illustrative point, the
- 18 Green Horn Creek, which is a tributary to the Bear, in
- 19 1850 had a certain level. And right now you go there and
- 20 it's 80-year old trees in a spacious canyon and people sun
- 21 bathing. It's a great place. It looks like it's never
- 22 been touched.
- 23 But actually the bottom of Green Horn Creek was
- 24 raised 200 feet with mercury debris, ladened debris, and
- 25 sediments during the historical gold mining. And then in

- 1 the last 100 years it went down 100 feet until it forms a
- 2 stable V, and now you have 80 year old trees on each side,
- 3 but you're actually standing on 100 feet of debris. When
- 4 you're on that creek, everything you see to the right to
- 5 the left, the whole V, is debris. It goes up 100 feet.
- 6 And so the surrounding area, it's not just an
- 7 isolated incident, you can drive for literally miles and
- 8 miles up there, and you are on nothing but, you know,
- 9 historical Placer mining debris.
- 10 So one thing to think about as a category that's
- 11 protective of human health and the environment, it was the
- 12 ingestion route which drove that. We started with a
- 13 number 20 just like you had, but that number was based on
- 14 mercury chloride. And when you start thinking elemental,
- 15 it's a little different.
- So that's one point, just from our experience.
- 17 And that -- because we want to be protective of human
- 18 health and the environment everywhere. We want to make
- 19 sure we don't get any new air emissions, but we want to
- 20 make sure we have numbers that are appropriate.
- 21 The other thing is landfills. And it does not
- 22 surprise me that mercury is coming off of landfills. I
- 23 presume there's anaerobic sulfate reducing bacteria in the
- 24 landfills that are causing methyl mercury and other
- 25 mercury sources.

1 You have the decomposition taking place there,

- 2 the methane coming off. You have a carrier for this to
- 3 get out.
- 4 I think when you're trying to figure out Class 1,
- 5 2 and 3, it would be really good to Ground Truth the new
- 6 information from Florida and some of these new sources
- 7 about that.
- 8 DIRECTOR LOWRY: Ground truth what is that?
- 9 U.S. EPA WASTE MANAGEMENT DIVISION ASSOCIATE
- 10 DIRECTOR JONES: Ground truth, you know, really check out
- 11 the ground truth, no pun intended. With the table, I
- 12 think it's table 3-1 that shows, I think, the 17,000
- 13 pounds of mercury in California here, one is from landfill
- 14 gas.
- 15 Because I think either that number should be
- 16 raised because we find out there's new information or we
- 17 could say that is a potential source but not a significant
- 18 source. And when you're asking for feedback, whether
- 19 something like mercury contaminated soil should go to a
- 20 Class 1, 2 or 3 land dump or disposal facility, then it's
- 21 really good to know that you consider that a significant
- 22 source just not a theoretical or academic source for
- 23 methyl mercury.
- 24 DIRECTOR LOWRY: Looking through the presentation
- 25 some of the folks here will give later, there's at least

1 one which suggests that it's a seriously flawed study from

- 2 Florida. Have you at EPA looked at that study at all?
- 3 U.S. EPA WASTE MANAGEMENT DIVISION ASSOCIATE
- 4 DIRECTOR JONES: No, it's rather recent. I actually
- 5 learned of it by reading your report. I learned a lot
- 6 reading your report. So I think your report was good
- 7 again there's Realtime on that.
- 8 But I think to really figure that out, because
- 9 this is a big deal, whether I still think you need the
- 10 emphasis on consumer products, air emissions, the
- 11 fluorescent light, you know, there should be viable
- 12 infrastructures for recycling those, so that they don't
- 13 break, they don't get to air.
- 14 But then if they ultimately do end up being land
- 15 disposed, I think to make an informed decision whether it
- 16 be Class 1, 2 or 3, we should really have a good
- 17 understanding of the amount that goes up. So I wanted to
- 18 end like I started, it's a big issue. It's one that it's
- 19 tricky because we have mercury in a lot of places. And
- 20 it's hard to figure out where is the most bang for the
- 21 buck, where is it most cost effective. I think your
- 22 report really lays out where those places are, and does a
- 23 really good job at helping isolate the issues.
- I guess I've come down at least on one part on
- 25 your regulated consumer products option try to eliminating

- 1 new sources of mercury, use pollution prevention and
- 2 recycling. And then for the legacy, let's really look at
- 3 that too and make sure that we're protecting the human
- 4 health and the environment. We didn't pick a number that
- 5 just triggers a lot of regulatory loops.
- 6 DIRECTOR LOWRY: All right. Thank you very much.
- 7 Let's move to our sister agencies within the
- 8 State of California that are here. And on my far left and
- 9 I'm going to try to get this in the right order is Jim
- 10 Donald, a senior toxicologist with the Office of
- 11 Environmental Health Hazard Assessment.
- 12 He's been there since 1989, Chief of the
- 13 reproductive toxicology and ecotoxicology programs. And
- 14 his main research background has been developmental of
- 15 neurobehavioral toxicity of metals.
- Then we have from the Air Resources Board, Dan
- 17 Donohoue, did I say that right, is it Donohoue? He
- 18 oversees the development of statewide air toxic
- 19 regulations for stationary sources in California.
- 20 And making the trip from San Francisco is the
- 21 Executive Officer of the San Francisco Bay Regional Water
- 22 Quality Control Board, Loretta Barsamian. She's the
- 23 Director of water quality programs for nine bay area
- 24 counties.
- 25 And with her is Tom Mumley the manager of the

- 1 TMDL, Total Maximum Daily Load, group for the San
- 2 Francisco Bay Regional Board. Also, I would look to the
- 3 State Water Resources Control Board to help direct the
- 4 Statewide TMDL program. And then finally Tom Howard who
- 5 is the Deputy Director at the State Water Resources
- 6 Control Board here in Sacramento. He's been doing that
- 7 for 17 years.
- 8 And I'm at your pleasure as to who wants to lead
- 9 off. It might make sense just to go left to right or my
- 10 left to right. Jim, do you want to start?
- 11 DR. DONALD: Thank you. I'm a late substitute
- 12 for Dr. George Alexeef our Deputy Director, who
- 13 unfortunately wasn't able to be here today.
- 14 DIRECTOR LOWRY: Thank you for coming.
- DR. DONALD: I'd like to also acknowledge the
- 16 staff in our Department who actually prepared the
- 17 materials I'm going to present.
- 18 (Thereupon an overhead presentation was
- 19 presented as follows.)
- DR. DONALD: I'd like to begin by explaining to
- 21 the people who are not familiar with the structure of
- 22 CalEPA that OEHHA is not a regulatory agency. Our
- 23 function is to conduct risk assessments and to establish
- 24 acceptable levels of exposure to toxic chemicals such as
- 25 mercury.

```
1 --000--
```

- 2 DR. DONALD: And once we establish those levels,
- 3 they can be used as advisory levels or they can be used by
- 4 other agencies as a basis for their regulatory actions.
- 5 ---00--
- 6 DR. DONALD: So within that context, we have an
- 7 interest in mercury that span several of our programs. As
- 8 you already mentioned that we at OEHHA issue sports fish
- 9 consumption advisories for State water bodies. As that
- 10 name suggests the advisories are specific to consumption.
- 11 It's really a function of public health rather than
- 12 environmental health.
- 13 But in some instances those fish consumption
- 14 advisories have served as at least a partial basis for
- 15 considering water bodies as compared for other purposes.
- As I already mentioned, we develop toxicity
- 17 guidelines for several different media. And it was
- 18 mentioned that mercury and mercury compounds are toxic air
- 19 contaminants. As an outgrowth of the toxic air
- 20 contaminant program, there's the children's environmental
- 21 health protection program, or SB 25 Senate Bill 25 that
- 22 was passed in 1999.
- 23 That bill requires OEHHA in collaboration with
- 24 the Air Resources Board to establish an initial list of up
- 25 to five toxic air contaminants that, in the words of the

1 statute, "May cause infants and children to be especially

- 2 susceptible to illness."
- 3 And the initial focus is primarily on developing,
- 4 nervous, immune and respiratory systems. And then in the
- 5 context of drinking water, we have a public health goal
- 6 program, which establishes levels that are considered to
- 7 pose no biological threat to public health.
- 8 Those public health goals are taken into account
- 9 by the Department of Health Services in setting their
- 10 maximum contaminants levels. So those PHDs and MCLs
- 11 exactly corresponds to the Department of Health Services.
- 12 It also has to take technological feasibility and
- 13 economic factors into account.
- 14 --000--
- DR. DONALD: The last program that has an
- 16 interest in mercury within our Department is the famous or
- 17 infamous Proposition 65, the Safe Drinking Water and Toxin
- 18 Enforcement Act of 1986.
- 19 ---00--
- DR. DONALD: We're jumping ahead a little bit,
- 21 but I just want to say under Proposition 65, even though
- 22 perhaps the most well known function is the identification
- 23 of chemicals that are known to cause cancer reproductive
- 24 toxicity and the warnings that are provided for exposures
- 25 to those chemicals, another provision which is perhaps

1 less widely known, but perhaps in some ways more relevant

- 2 to the discussion today, is the prohibition of discharges
- 3 to sources of drinking water of any chemical that's on the
- 4 Proposition 65 list.
- 5 So I'd like to talk about each of those in a
- 6 little more detail. As we've already heard, consumption
- 7 of fish is the primarily nonoccupational exposure to
- 8 methyl mercury. The fish consumption advisories that are
- 9 based on exposure to methyl mercury are primarily
- 10 associated with runoff from mercury mining or gold mining,
- 11 and we've already had a little bit about that this
- 12 morning.
- 13 The first California fish advisory that was
- 14 issued was based on methyl mercury levels in Striped Bass
- 15 in the Delta, and that goes back to 1971, and most of the
- 16 recent State advisories having included consumption
- 17 restrictions that are based on methyl mercury. There are
- 18 a total of 26 fish advisories that are currently in place,
- 19 and 12 of those advisories include consumption
- 20 restrictions that are based specifically on methyl
- 21 mercury.
- --000--
- DR. DONALD: The intent of the consumption
- 24 advisories are to protect frequent consumers of sport fish
- 25 or subsistence fishers from the neurotoxic effects of

1 methyl mercury. In order to develop those numbers, we've

- 2 looked at the most current studies that measure fairly
- 3 subtle neurobehavioral effects in developing fetuses and
- 4 young children. As many people are probably aware, there
- 5 has been a lot of interest in that area, and some very
- 6 large scale studies have been conducted over a number of
- 7 years, primarily in the Sea Shell Islands, where this
- 8 population consumes a very large amount of fish, and also
- 9 in the Fair Islands in North Atlantic where there's
- 10 another population that consumes not only fish, but large
- 11 amounts of quail meat contaminated with methyl mercury.
- 12 The results of those studies are still coming in
- 13 and there's a lot of discussion of how to interpret them
- 14 and how to reconcile the results of the two different
- 15 studies.
- 16 --000--
- 17 DR. DONALD: The one thing that's clear is that
- 18 there should be, and it is a special concern for pregnant
- 19 woman and young children, and that is the advice that we
- 20 issue is based primarily on that concern.
- 21 --000--
- DR. DONALD: Under SB 25 the children's
- 23 environmental protection program, OEHHA tries to summarize
- 24 scientific studies on mercury compounds that show
- 25 children's sensitivity to mercury exposures. Those

- 1 summaries are reviewed by the ARB Science Review Board.
- 2 And they made a determination that mercury should
- 3 not be placed in the highest level of priority. It is not
- 4 among the five chemicals that were initially placed on the
- 5 list, and that's primarily due to the relatively low air
- 6 exposures and not about any concerns over mercury toxicity
- 7 or not over reduced concerns about mercury toxicity.
- 8 And in order to be considered under SB 25,
- 9 mercury had to already have been identified as a toxic air
- 10 contaminant, which as we've already heard, was the case.
- 11 OEHHA has developed toxicity criteria for
- 12 airborne mercury compounds under the toxic air contaminant
- 13 program. These reference exposure levels or RELs are
- 14 based on inorganic mercury and mercury compounds and
- 15 they're based on neurotoxic effects. These numbers, the
- 16 chronic REL is .9 micrograms per cubic meter, the acute
- 17 REL is 1.8 Micrograms per cubic meter. And these numbers
- 18 were developed based on adult occupational exposures.
- 19 These numbers are not based on methyl mercury and
- 20 they're not based on developmental exposures that methyl
- 21 mercury is considered under SB 25. Developmental
- 22 exposures to methyl mercury will be explicitly taken into
- 23 account.
- --000--
- 25 DIRECTOR LOWRY: So you have a time table for

- 1 that?
- 2 DR. DONALD: There is a specific date by which we
- 3 are supposed to do that, I believe, but I don't know what
- 4 it is. I can get back to you on that.
- 5 DIRECTOR LOWRY: All right.
- 6 DR. DONALD: Under the Public Health Goal
- 7 Program, although mercury chloride has been identified as
- 8 a possible human carcinogen, the public health goal was
- 9 actually set on kidney toxicity of inorganic mercury.
- 10 And the public health goal is 1.2 parts per
- 11 billion or 12 micrograms per liter in drinking water.
- 12 Again, that number will be taken into account setting the
- 13 maximum contaminant level for mercury.
- 14 Under Proposition 65, as I already mentioned,
- 15 chemicals are listed if they're known to cause cancer or
- 16 reproductive toxicity. And reproductive toxicity includes
- 17 developmental male reproductive and female reproductive
- 18 effects. Methyl mercury compounds were listed as known to
- 19 cause cancer in May of 1996. Methyl mercury was listed as
- 20 known to cause developmental toxicity in July of 1987.
- 21 That was one of the earliest chemicals listed under
- 22 Proposition 65 for reproductive toxicity.
- 23 And based on the extensive knowledge we have of
- 24 this developmental neurotoxicity that goes back to the
- 25 episodes in the 1950s, there's also a listing for mercury

1 and mercury compounds based on developmental toxicity,

- 2 which went into effect in July of 1990, so that
- 3 encompasses the methyl mercury listed, but the separate
- 4 listing stands because of the effective date of the
- 5 listing.
- But because of the latter, we're listing all
- 7 forms of mercury, not just methyl mercury, but also
- 8 elemental and inorganic and other organics, as already
- 9 mentioned, are covered by Proposition 65.
- 10 And as I already have mentioned there are two
- 11 provisions of the statute that apply to those chemicals.
- 12 Warnings are required for deliberate exposures above the
- 13 specified levels. But also discharges to sources of
- 14 drinking water are specifically prohibited about the same
- 15 specified levels, so I would point out that not all
- 16 discharges are prohibited. There are levels based on risk
- 17 of cancer or the likelihood of reproductive effects which
- 18 provide an exemption for the discharge of prohibitions.
- 19 And the specific levels that establish these
- 20 thresholds, both the warning requirement and the discharge
- 21 prohibition are for cancer, a ten to the minus five risk
- 22 level, which means a level of exposure that is expected to
- 23 cause no more than one excess case of cancer per 100,000
- 24 exposed individuals in a population with life time
- 25 exposure.

```
1 --000--
```

- 2 DR. DONALD: If a reproductive toxicity the
- 3 threshold for warning or discharge prohibition, there's a
- 4 level at which there would be no observable reproductive
- 5 effect given an exposure 1,000 times higher. So in
- 6 practice what that means is we find a level of exposure
- 7 that causes no observable effect and divide that by 1,000.
- 8 --000--
- 9 DR. DONALD: To date, all of the issues that have
- 10 arisen in Proposition 65 with regard to mercury have been
- 11 related to the warning requirement. So far no issues have
- 12 arisen that were related to discharge to sources of
- 13 drinking water.
- 14 --000--
- DR. DONALD: And finally, since methyl mercury,
- 16 and particularly mercury compounds in general, are so well
- 17 known to be developmental toxicants, I would like to
- 18 mention that that's not really the only form of toxicity
- 19 that we're concerned about. Methyl mercury compounds are
- 20 carcinogenic. Methyl mercury chloride was found to cause
- 21 kidney tumors in three studies of male mice. They methyl
- 22 mercury compounds have also been observed to cause
- 23 primarily chromosomal damage.
- 24 So far no cancer potency estimate for methyl
- 25 mercury has been promulgated by OEHHA. I would mention

- 1 though that we did in 1994 release a draft number for
- 2 reproductive toxicity of .3 micrograms per day. Given the
- 3 extensive work that's been done since then, we probably --
- 4 we've not finalized that draft, as it stands, but we'd go
- 5 back and reconsider the more recent data before taking any
- 6 final action.
- 7 Thank you.
- 8 DIRECTOR LOWRY: All right, thank you.
- 9 Mr. Donohoue.
- 10 MR. DONOHOUE: Thank you. I'm Dan Donohoue with
- 11 the California Air Resources Board. I don't have any
- 12 overheads today. I just have a series of brief comments
- 13 to provide a little bit of additional background as far as
- 14 the Air Resources Board and the local air pollution
- 15 control districts' efforts for controlling air emissions
- 16 of mercury, and then just probably two brief comments with
- 17 respect to the report today.
- 18 As mentioned by a couple of speakers, mercury and
- 19 mercury compounds have been identified as toxic air
- 20 contaminants in the State of California. They are also
- 21 listed as federal hazardous air pollutants. From the air
- 22 standard, the main effects that we evaluate for are the
- 23 acute and chronic effects because those have health values
- 24 associated with those. There has not been a cancer unit
- 25 risk factor developed yet or a potency factor as mentioned

- 1 by the previous speaker. So in looking at health risk
- 2 assessments, at this point in time, we do not look at the
- 3 cancer impacts. There is not Scientific Review Panel
- 4 approval for the value of that.
- 5 The major sources of mercury into the air that
- 6 we've identified, the most significant one is windborne
- 7 dust associated with national occurring mercury compounds,
- 8 combustion processes, you know, particularly fossil fuel
- 9 combustion, waste combustion and incineration of waste.
- 10 In addition, manufacturing processes, cement
- 11 manufacturing, geothermal power production are also
- 12 sources of mercury emissions.
- 13 As compared to most of the rest of the country,
- 14 we do see significantly less mercury emissions due to the
- 15 fact there is very little coal combustion that occurs in
- 16 California.
- 17 Since 1990, the California Air Resources Board
- 18 has been conducting ambient air monitoring at the 17
- 19 sites. Historically, there was 21 sites, but currently
- 20 there are 17 sites, throughout California where a variety
- 21 of toxic air contaminants are monitored. Elemental
- 22 mercury has been monitored historically at those sites.
- 23 The levels of ambient mercury monitored is less than
- 24 detection at those sites. There have been occasional
- 25 measurements that were above the detection level.

```
1 Basically, the State level is reported at 1.5
```

- 2 nanograms per meter cubed. As far as statewide ambient
- 3 air average that is actually half the protection level,
- 4 which means we were showing no detects at those sites, but
- 5 we do end up reporting those at half the overall
- 6 protection level.
- 7 In addition, there are six sites that have
- 8 been -- that are in the process of being established as
- 9 part of the Children's Environmental Health Protection
- 10 Program, the SB 25 program. At those six new sites that
- 11 they're going in, mercury will be again monitored at those
- 12 sites. Two of the sites are up and running, and the
- 13 initial results looking at mercury at those sites are
- 14 showing, again, nondetect with respect to ambient levels
- 15 of mercury.
- With respect to air regulations, both the Air
- 17 Resources Board and the local air pollution control
- 18 districts have authorities to regulate emissions from
- 19 stationary sources of mercury. The Air Resources Board
- 20 also has responsibility to regulating mobile sources and
- 21 mobile fuels as they relate to mercury emissions.
- 22 Neither the Air Resources Board nor the local air
- 23 pollution control districts have adopted any regulations
- 24 that are specifically designed to control mercury
- 25 emissions in and of themselves. However, there are a

1 number of programs in place that do look at emissions and

- 2 would look at mercury emissions were they part of the
- 3 emissions from those facilities.
- 4 Most of the larger air pollution control
- 5 districts have either toxic use source review rules or
- 6 toxic new source review policies. Those policies or
- 7 regulations would require them to look at any new source
- 8 to identify any toxic emissions from those sources and to
- 9 conduct health risk assessments before permitting those
- 10 facilities to operate.
- 11 Basically, the level of control that would be
- 12 required is that that which is best available control
- 13 technology. And if the risk levels exceeded a significant
- 14 risk value that was established by the district, the
- 15 district would deny the permit.
- In addition, there are other State and local
- 17 regulations that have been adopted. Their primary focus
- 18 has not necessarily been with respect to control of
- 19 mercury emissions, but has been -- that mercury has been
- 20 controlled as part of those efforts. One that has
- 21 previously been mentioned is the landfill regulations that
- 22 have been adopted by the local districts.
- 23 The second one would be the metal melting air
- 24 toxic control measure, the statewide measure which was
- 25 mainly designed to reduce lead, cadmium and other heavy

1 metals emissions from metal melting operations. To the

- 2 extent that mercury is involved in those emissions, the
- 3 control systems that were established to reduce the
- 4 emissions to the 99 percent level would also be effective
- 5 in reducing mercury emissions from those things.
- In addition, the hot spots program has specific
- 7 reporting requirements. Any stationary sources that emit
- 8 more than one pound of mercury per year are to report to
- 9 the districts and that later comes into the Air Resources
- 10 Board. And in looking at those emissions depending on the
- 11 magnitude of those emissions and the proximity of public
- 12 perceptors to show, the sources may be required to do
- 13 health risk assessments. And the results of those health
- 14 risk assessments may repair the sources to do either
- 15 notification or a risk reduction audit plan.
- To this point, there have not been any sources
- 17 that have had to do that notification with respect to
- 18 mercury. At the current time, the Air Resources Board nor
- 19 the global districts neither one are developing any
- 20 specific measures to address mercury emissions from
- 21 stationary sources to the air.
- 22 With respect to the report presented today, the
- 23 Air Resources Board is supportive of any efforts to reduce
- 24 mercury emissions. We believe it's good public policy to
- 25 reduce potential emissions of mercury to the air, land and

1 water to the maximum extent possible in consideration of

- 2 costs and risk.
- 3 I think one of the concerns that we would have or
- 4 recommendations in the area that you may need to look into
- 5 further has to do with the classification of soils with
- 6 naturally containing mercury in those. We've been
- 7 involved somewhat in the issue of naturally occurring
- 8 asbestos in soils. It presents a unique challenge when,
- 9 in fact, that material has come to bear naturally. There
- 10 are some unique costs and risk considerations associated
- 11 with that, and there are also some issues about precedent
- 12 setting with respect to how do you treat naturally
- 13 occurring toxics in the environment, and what do you need
- 14 to do.
- So there certainly are a lot of -- a number of
- 16 additional issues that need to be, I think, discussed
- 17 fully as you move forward with respect to particularly
- 18 that element of the program.
- 19 Thank you.
- 20 DIRECTOR LOWRY: All right. Thank you. I have a
- 21 couple of follow-up questions. Is it accurate to state
- 22 that the concerns that the -- and the risk assessments
- 23 that you have done relate to inhalation of mercury, is
- 24 that your primary focus?
- MR. DONOHOUE: Our primary focus would be chronic

- 1 inhalation, acute inhalation. And for the inorganic
- 2 mercury and mercury compounds and for mercury chloride, we
- 3 would look at multi-pathway so we would take the chronic
- 4 oral route also in consideration on there. The driver in
- 5 the risk assessments that we've seen is the oral route.
- 6 DIRECTOR LOWRY: All right. And you mentioned
- 7 that you're monitoring for elemental mercury. And by and
- 8 large you're getting a lot of detection limits on that.
- 9 Would you expect any different results if you
- 10 were monitoring for any other type of mercury?
- 11 MR. DONOHOUE: I think based upon some of the
- 12 comments that we've heard here, maybe so. I mean, you
- 13 know, the current methodologies both the sample collection
- 14 and analysis does focus on elemental mercury and its
- 15 various valence states there.
- 16 Certainly, it would not be picking up the organic
- 17 mercury that was fairly easily volatilized. And so we are
- 18 aware that we would be missing that fraction. To what
- 19 extent that is at the current time, we don't know.
- 20 DIRECTOR LOWRY: All right. Thank you. Any
- 21 questions from you?
- Okay. Next we have Loretta Barsamian from the
- 23 San Francisco Bay Regional Water Quality Control Board.
- 24 Welcome, and thank you for coming.
- MS. BARSAMIAN: Thank you so much for inviting us

1 here today. I am very complimentary of the staff report.

- 2 I actually read it cover to cover. I thought it was
- 3 excellent, particularly on all the sources and laying out
- 4 all the alternatives, all your recommendations. I thought
- 5 it was just a very good multimedia approach to dealing
- 6 with mercury.
- 7 And I think that is probably the best news for
- 8 today is to see people at the table trying to work in
- 9 conjunction with you, air, OEHHA, water, federal. We need
- 10 to resolve the mercury issues in a partnership fashion.
- 11 And I think this report and its alternatives have done an
- 12 excellent job in laying those out.
- 13 DIRECTOR LOWRY: Thank you.
- 14 MS. BARSAMIAN: The important part is in San
- 15 Francisco Bay, which relates to today's workshop is that
- 16 the regional board has listed San Francisco Bay as
- 17 impaired. That term means something, impaired under the
- 18 Clean Water Act.
- 19 And we've done that in conjunction with the fish
- 20 advisory that OEHHA has on eating baked fish. And we also
- 21 have done it because of the bioaccumulative nature of
- 22 mercury.
- 23 Under the Clean Water Act an impairment listing
- 24 requires us then to do the TMDL, Total Maximum Daily Load.
- 25 It's a term you will consistently hear from us, because

1 it's our priority program. It's requiring us to now look

- 2 at the sources. What are the sources causing that
- 3 impairment? And then the next step is to write a control
- 4 strategy for how we will deal with those sources and
- 5 reduce the sources and input so that we can then stop the
- 6 impairment of the bay.
- 7 It's been a very difficult effort to do because
- 8 we're mostly dealing with legacy sources, and that is what
- 9 we're finding in our TMDL efforts that we have to deal
- 10 with legacy sources, but it also requires us to work very
- 11 specifically with you and the Air Board and the Waste
- 12 Board and OEHHA on dealing with active sources. And we
- 13 need these to be controlled.
- 14 We totally support the pollution prevention
- 15 activities, the source control activities, the recycling
- 16 activities, because all the sources and air deposition is
- 17 causing us to continue this impairment.
- 18 Our regulatory authority right now allows us to
- 19 work with the POTWs the soil treatment plants in
- 20 regulating their effluent, and that's usually a numerical
- 21 limit, that they can only discharge a certain parts per
- 22 billion of mercury in that effluent.
- 23 We also are dealing right now with the storm
- 24 water program, which is also a permit from us, that does
- 25 not, at this point, have numeric limits, but basically

1 says that cities and the counties have to implement best

- 2 planning practices. They have to do better housekeeping
- 3 in order to stop runoff going into San Francisco Bay that
- 4 has mercury loadings in it.
- 5 We also are very active in the dredging
- 6 community. This is a permit from us where we have to
- 7 regulate dredging and dredge material into the bay area
- 8 and waterways to assure that mercury, in particular, is
- 9 dealt with. And if the sediments are contaminated, we do
- 10 not allow aquatic disposal.
- 11 Lastly what you hard today, we also regulate
- 12 disposal to land. We have existing regulatory authority
- 13 to deal with a lot of these issues, but we're not certain
- 14 yet how to deal with air legacy sources and we're not
- 15 certain yet how to deal with air deposition issues.
- So that's why today's meeting is so important to
- 17 us, is we have to have a very united way of dealing with
- 18 the mercury contamination so that we can stop the
- 19 impairment of the bay and stop the fish advisories in the
- 20 bay and many of our tributaries.
- 21 DIRECTOR LOWRY: Can I ask you, maybe it's a \$64
- 22 question, maybe it's a \$64 billion question. And that is
- 23 given the load in the nontechnical sense of legacy waste,
- 24 are we wasting our time here looking at other sources, and
- 25 if not, why not?

1 MS. BARSAMIAN: I would say absolutely not, we're

- 2 not wasting our time, because the legacy sources will be
- 3 difficult to control, and it will be years to control it.
- 4 As you know, inactive mines, we need to have the good
- 5 samaritan provision adopted in the water. The State has
- 6 it. The federal government doesn't.
- 7 But that's dealing with legacy issues. We can't
- 8 allow continued sources going in that will contribute to
- 9 the impairment. So the existing loads are not as big as
- 10 the legacy, but we feel very strongly that we need to deal
- 11 with the whole picture. We can't just do legacy and let
- 12 everyone else walk.
- 13 It's definitely a big picture issue. We have to
- 14 be united in how we deal with these things.
- 15 DIRECTOR LOWRY: All right.
- MS. BARSAMIAN: And with me is Tom Mumley, who is
- 17 actually responsible for writing TMDL. Is there anything
- 18 else that you wanted to add to that?
- 19 MR. MUMLEY: Yes. Thank you. I'd actually like
- 20 to add few specifics to what Loretta is saying. I want to
- 21 partly use the opportunity to thank you again for what
- 22 you've done and thank you for the opportunity for
- 23 providing input upfront, because I know a lot of the data
- 24 that we've generated in our analysis of mercury in San
- 25 Francisco Bay has been shared with you.

1 With that perspective in mind, we shared with you

- 2 the frustration that we are data limited to make the most
- 3 informed decision. And that's one of our big challenges
- 4 and I think one of the ultimate challenges that we have in
- 5 making good judgments here is where do we spend our
- 6 dollars?
- 7 I mean, we have to balance spending dollars and
- 8 generating data versus spending our dollars on actions.
- 9 And I think you recognize that, in your analysis of
- 10 recommendations, where we can make an informed decision
- 11 based on some good assumptions, let's move forward versus
- 12 where there is significant economic consequences to a
- 13 decision we need to generate data.
- 14 Some other background points just for those
- 15 listening. When we speak from a water quality perspective
- 16 versus a hazardous waste perspective, there's some
- 17 distinct differences. When we're talking hazardous waste,
- 18 we're talking hot stuff, and we're talking about hazardous
- 19 waste thresholds that are defined as either total mercury
- 20 in 20 parts per million or soluble mercury in the form of
- 21 .2 milligrams per liter.
- 22 Well, our concern about mercury in water is at
- 23 the 50 parts per trillion range, not the .2 parts per
- 24 million range. There's a 4,000 fold difference in levels
- 25 of concern.

- 1 DIRECTOR LOWRY: Why?
- MR. MUMLEY: If you get into the total amount,
- 3 our targets that we're developing for San Francisco bay
- 4 lead us to conclude that we'd like to see mercury and
- 5 sediments in the bay no higher than .2 parts per million,
- 6 whereas the total threshold for mercury is 20.
- 7 DIRECTOR LOWRY: And why that distinction?
- 8 MR. MUMLEY: Excuse me?
- 9 DIRECTOR LOWRY: Can you elaborate on why you're
- 10 coming to that conclusion?
- 11 MR. MUMLEY: Those numbers are driven by, you
- 12 know, analysis of what it takes to limit the amount of
- 13 mercury that would bioaccumulate through the food chain.
- 14 So the ultimate concern is the amount of mercury
- 15 in a fish tissue. There's actually an additional
- 16 threshold that we can work from, that EPA has a national
- 17 criteria now for levels of mercury in fish, basically
- 18 methyl mercury in fish, and that's a .3 parts per million.
- 19 So you can basically, through a risk model, you
- 20 can calculate back what level would you want to recognize
- 21 in the water column to hopefully prevent levels of fish to
- 22 exceed the .3 parts per million tissue concentration.
- 23 The bottom line, you know, it's like levels of
- 24 mercury less than hazardous poses no significant threat.
- 25 I mean we've had experiences along that line with

1 involvement of the cleanup of one of the big legacy

- 2 sources, the New Almaden mine in the Upper Guadalupe
- 3 Watershed in South San Jose.
- 4 If they were to cleanup that site strictly for
- 5 human health based on risk factors with exposures to
- 6 people and to the heartland that was being generated here,
- 7 there would be large amounts of mercury left to continue
- 8 to erode into the system into the bay, because the levels
- 9 of concern for direct human exposure is significantly
- 10 different than the levels of concern to fish and wildlife.
- 11 And then we have the indirect human problem of
- 12 accumulation in fish, we can't eat the fish. I mean, the
- 13 fish in Guadalupe River Watershed downstream of the
- 14 developing mine don't even have a consumption, you know,
- 15 not a limited consumption, there's no consumption allowed
- 16 for those fish.
- 17 So just to point out is that how we define a
- 18 problem is more restrictive than just defining something,
- 19 a waste material as hazardous. I mean we have hazardous
- 20 waste levels concerned to really keep those hot sources
- 21 far away from humans and others. But then in between our
- 22 water bodies and our hazardous waste sites are lots of
- 23 other opportunities to intercept and manage them.
- So we're strongly supportive of this
- 25 collaborative effort. We recognize that we have some

- 1 direct authority and we're exercising those direct
- 2 authorities either through existing permitting exercises
- 3 or through our TMDL effort. And recognize the reason we
- 4 have to do TMDLs is literally stated in the regulations a
- 5 lot, where we identify impaired waters that are expected
- 6 to remain impaired after we've implemented the existing
- 7 requirements of the act to the technology based
- 8 requirements.
- 9 Essentially, all our existing listings are there
- 10 because our existing efforts aren't good enough to solve
- 11 the problem, so that's why it's pushing us to seek
- 12 resolution or seek control of sources beyond what is in
- 13 immediate reach of us. So if you're dealing with our
- 14 direct waste water sources, we've also been dealing with
- 15 direct discharges associated with contaminated soils,
- 16 contaminated wastes, either from landfills or add cleanup
- 17 sites.
- 18 But what we don't have control over right now,
- 19 which obviously still needs to be taken into consideration
- 20 are consumer product sources and air sources. And so
- 21 that's why we certainly want to be with you in partnership
- 22 in finding a smart way of regulating the whole mass.
- 23 And one last thought on the regulating the whole
- 24 mass. Yes, if you look on a mass basis the most
- 25 significant amount of mercury is already in the system,

```
1 due to legacies, so we have large amounts of sediments.
```

- To some extent, we're lucky that mother nature,
- 3 going through her course, will slowly but surely address
- 4 what's in there. But as long as we're continuing to put
- 5 mercury in the system at rates greater than it can be
- 6 removed, we will never solve the problem. That's why you
- 7 have to be careful about doing a mass balance on a dynamic
- 8 system, that throws a ton in the system that doesn't
- 9 take -- all we have to realize is more is coming in than
- 10 is going out and levels that will never be reduced.
- 11 So we have to look at opportunities to reduce
- 12 levels coming in, and what gets us into the need for
- 13 addressing these sources that you're now looking at.
- 14 DIRECTOR LOWRY: All right. Thank you.
- 15 Mr. Howard from the State Water Resources Board.
- MR. HOWARD: Well, Loretta and Tom covered many
- 17 of the issues I would have mentioned. But just a little
- 18 background and a little further issue on TMDLs.
- 19 The Board presently when it regulates various
- 20 sources, there are sort of three ways in which mercury is
- 21 involved in our regulatory program. The first is in the
- 22 set objectives. The second is in permitting, and the
- 23 third is in the TMDL arena.
- 24 With respect to setting the objective. Tom
- 25 mentioned the fact that 50 parts per trillion is a

1 reasonably common objective found among the nine regional

- 2 water quality control board basin plans.
- 3 However, the U.S. EPA is in the process of
- 4 considering promulgation of a California statewide
- 5 objective for fish tissue. And I'm told by our folks who
- 6 are required to implement this that we will be putting
- 7 together a State Implementation Plan. And that the
- 8 translator in our opinion for the fish tissue objective
- 9 that the U.S. EPA would promulgate is going to be about 17
- 10 parts trillion.
- Now, by about 2003, we suspect that the water
- 12 quality objective for this state will be in the area of
- 13 about 17 parts per trillion, based on U.S. EPA's fish
- 14 tissue objective that they're going to be promulgating in
- 15 the near future.
- Well, we write permits for MPDS permits for waste
- 17 water discharge. And we're having some substantial
- 18 problems around the State right now meeting existing
- 19 mercury objectives. In the waste water of the treatment
- 20 plants treating down to the level of 17 parts per trillion
- 21 or 50 parts per trillion is extremely problematic for the
- 22 municipalities and for that matter for the industry
- 23 dischargers.
- 24 And, of course, the only way to really meet those
- 25 numbers is to get them to a source reduction. And this is

1 where, of course, your activities will be of great utility

- 2 to us, that mercury is obviously ubiquitous in a lot of
- 3 areas, and it's appearing naturally in the effluent.
- 4 Since we can't treat it out with these kinds a levels, we
- 5 need to reduce it from its source. Obviously, we need to
- 6 have this kind of approach to deal with that.
- With respect to TMDLs, you've heard about some of
- 8 the issues in the San Francisco Bay, but we have actually
- 9 81 mercury impaired water bodies presently listed around
- 10 the State based on our 1998 303(d) listing.
- 11 In fact, I suspect that there will be -- we're
- 12 doing the new listing now and there will be a number of
- 13 additional water bodies, especially the waterbodies on the
- 14 eastern slopes -- western slopes of the Sierras due to
- 15 mercury legacy pollutants.
- As Loretta pointed out, to a great extent, many
- 17 of these are legacy sources, but we do need to control the
- 18 ongoing inputs.
- 19 Just to add as an aside, we do have a number of
- 20 contracts outstanding now to try to look at mercury
- 21 cycling in the environment. We are working with CALFED.
- 22 We've got about seven and a half million dollars in
- 23 contracts now looking at giving the gold mining area
- 24 issues of bioaccumulation, biomagnification, food web
- 25 analysis, source identification trying to develop more

1 information about the legacy issues from the gold mining

- 2 era.
- I had a couple of comments I wanted to make
- 4 regarding the recommendations I saw in your report. I
- 5 guess the first comment I'd like to make is I'd like to
- 6 echo the comments of my Air Board colleague that there is
- 7 a concern, in my part, regarding the recommendation to
- 8 regulate all mercury containing waste as hazardous waste.
- 9 Obviously, as we've been pointing out it's
- 10 ubiquitous in the environment right now, a lot of legacy
- 11 sources, also naturally occurring sources. And, you know,
- 12 once these materials become handled by humans and then to
- 13 classify them as hazardous waste, I think, can be quite
- 14 problematic.
- Just, as an example, up in the coast range,
- 16 CalTrans has fill issues regarding, you know, moving some
- 17 soils for road construction and are we going to call these
- 18 hazardous wastes then and try to treat them as such.
- 19 I also saw among the things that were listed as
- 20 potential hazardous wastes under this particular
- 21 recommendation, sewage sludge. The Board tries to
- 22 encourage beneficial reuse of sewage sludge. Obviously,
- 23 only to the extent that it's safe to do so, but it would
- 24 be a concern to start classifying it as hazardous waste if
- 25 there are only minute quantities of mercury in it, because

- 1 we don't feel that necessarily poses a threat in
- 2 comparison to the advantages associated with beneficial
- 3 reuse.
- 4 I noticed that one of your alternatives is
- 5 looking at intentionally adding mercury. And that, of
- 6 course, strikes me as being much more -- a potentially
- 7 more appropriate way to address the issue of mercury
- 8 pollution in the environment. I think you need to be
- 9 careful about how you define intentionally added in that
- 10 circumstance.
- 11 Again, our sewage sludge, you know, I think I saw
- 12 it was listed as being excluded under that, but I think a
- 13 person could make an argument that the mercury that
- 14 appears in sewage sludge could be, at least in part,
- 15 potentially added, so that's a potential concern.
- 16 DIRECTOR LOWRY: Those darn 49ers.
- 17 (Laughter.)
- MR. HOWARD: Yes, that too.
- 19 Anyway that is some of my comments.
- 20 DIRECTOR LOWERY: Well, thank you very much all
- 21 of you for coming. What I'd like to do so is give you one
- 22 more opportunity, if while sitting there someone else said
- 23 something that you'd like to jump in.
- 24 And then after that take a short break, oh about
- 25 ten minutes, and reconvene with our environmental panel.

- 1 But I see one hand up, so go ahead.
- 2 U.S. EPA WASTE MANAGEMENT DIVISION ASSOCIATE
- 3 DIRECTOR JONES: Yeah, I just wanted to comment on what
- 4 Tom said. You know, I had mentioned maybe a legacy
- 5 category and we might want to look at what the appropriate
- 6 number is, and that was really thinking the soil
- 7 ingesting, thinking of, you know, a grading, you know,
- 8 somebody is doing some grading on their property or
- 9 something like that.
- 10 However, if there is a significant source of
- 11 erosion, then that's a different source. And I know at a
- 12 sulfur bank it weakened a removal action, because there
- 13 was basically a cliff of mercury contaminated sediment or
- 14 debris, which we then put in the proper slope and
- 15 revegetated. And so I don't think there's a real
- 16 conflict, but I think with these 81 water bodies that are
- 17 listed right now, and a potential for more, there's going
- 18 to be some local sources that may be determined in a
- 19 certain watershed or creek are significant erosion
- 20 sources.
- 21 And that is a totally good reason to take, even
- 22 if it's, you know, whatever the right number is, people
- 23 determined it's a large mass to deal with it. I don't
- 24 want to make it look like it in all cases, and I'm sure
- 25 people are flexible and creative enough that that could be

- 1 taken into account.
- 2 DIRECTOR LOWRY: All right. Thank you, David.
- 3 Any other comments from the panel members?
- 4 MR. MUMLEY: One further observation has to do
- 5 again with the methyl mercury driver factor here. And
- 6 what you could do is take into consideration when we're
- 7 addressing sources and consequences of those sources, what
- 8 can we do to manage that is in terms of methylation
- 9 capability, either at where it's going or how it gets
- 10 there. So that would allow us some opportunity to address
- 11 mercury ladens, mercury in soils, that if managed
- 12 properly, possibly even on-site as in transportation,
- 13 could be managed in a way that it would be no threat to
- 14 the result of the methyl mercury being released into the
- 15 environment.
- 16 It's actually not methyl mercury being released
- 17 into the environment, it's mercury being released into the
- 18 environment in areas where it could methylate. I think we
- 19 can find ways to effectively collect managed soils and the
- 20 like at the site, et cetera within the context of our
- 21 spectrum of waste management practices, everything doesn't
- 22 have to be disposed of at the site to solve this problem.
- MS. BARSAMIAN: The only comment on that is it's
- 24 hard to know what causes the methylation.
- MR. MUMLEY: Well, that's where I'm trying to go

- 1 in that that approach we're going to be really data
- 2 starved because of our limited understanding of how to
- 3 make that call.
- 4 MS. BARSAMIAN: That's what some of the comments
- 5 that Tom Howard was talking about is that we've got some
- 6 contracts going on trying to figure out how that happens.
- 7 DIRECTOR LOWRY: All right.
- 8 Well, thank you very much. And for those of you
- 9 who have business cards and have not given them to our
- 10 reporter, please do so. Otherwise go over and spell your
- 11 names slowly to him. We'll take a break till five minutes
- 12 after 11:00.
- 13 (Thereupon a brief recess was taken.)
- 14 DIRECTOR LOWRY: If you will all take your seats
- 15 we'll try and get started. All right, we have three
- 16 distinguished guests from the environmental community here
- 17 with us today.
- 18 Speaking first will be Lena Brook, the Project
- 19 Director of Clean Water Action. Since March, Ms. Brook
- 20 has directed the environmental health and toxics program
- 21 for Clean Water Action's San Francisco office. Her work
- 22 involves conducting research on a variety of environmental
- 23 toxins as well as educating community members,
- 24 particularly those who are most at risk about the health
- 25 hazards of environmental toxic exposures.

1 Bill Magavern, speaking second, is the senior

- 2 legislative representative for the Sierra Club of
- 3 California. He's an advocate on environmental issues
- 4 including toxics, energy and environmental justice. He's
- 5 been doing that since 1988, it says here. You don't look
- 6 that old.
- 7 He has represented environmental groups before
- 8 Congress and federal agencies and now focuses on
- 9 California legislative issues and California regulatory
- 10 agencies.
- 11 Finally, we have Mark Murray, the executive
- 12 director of Californians Against Waste. He's been with
- 13 them for the past 14 years, where he's been actively
- 14 involved in primary solid waste management and recycling
- 15 issues.
- So welcome each of you. And Lena the floor is
- 17 yours. You need to press the button on your microphone.
- MS. BROOK: Thank you.
- 19 DIRECTOR LOWRY: When the green goes on, it's
- 20 working.
- 21 MS. BROOK: Good morning. My name is Lena Brook
- 22 and I'm here today to speak on behalf of the Clean Water
- 23 Action, as well as its 20,000 California members.
- 24 Clean Water Action is a nonprofit organization
- 25 that works on a variety of pollution prevention,

1 environmental health and drinking water protection issues

- 2 throughout California.
- 3 DIRECTOR LOWRY: Can everyone hear in the back?
- Why don't you try to put the microphone right up
- 5 to your mouth.
- 6 MS. BROOK: Is this better?
- 7 Okay. I would like to begin by concurring with
- 8 earlier speakers in commending Corey Yep and also the
- 9 Department for compiling what we thought to be a very
- 10 thorough, useful and lucid report that concisely outlines
- 11 the mercury problem that we face today.
- We're heartened by the fact that the Department
- 13 is proactively considering regulatory mechanisms that will
- 14 lead to decreases in our environmental mercury loads.
- We wholeheartedly agree with the report's
- 16 assessments that despite controls that have been put into
- 17 place throughout the past 20 years the environmental
- 18 mercury burden remains unacceptably high, and that action
- 19 must be taken immediately to protect public health and the
- 20 environment.
- 21 As we've heard mercury continues to be released
- 22 to air, water and land from a myriad of sources. It
- 23 leaches from municipal landfills. It's recently been
- 24 detected in landfill gas as well. And as a result, the
- 25 mercury finds its way into water bodies and continues to

1 bioaccumulate in fish tissue, which places the public at

- 2 risk.
- 3 The more we examine actual exposure to mercury,
- 4 the more evidence we have of the pervasive nature of this
- 5 problem. A recent a Mobile, Alabama study tested a small
- 6 group of fish consumers and found that seven out of the 18
- 7 people tested would rank among the top five percent of the
- 8 U.S. population with the most severe mercury exposure.
- 9 And earlier this year, data from the Centers for
- 10 Disease Control indicated that one in ten women of child
- 11 bearing age in the United States are now at risk for
- 12 having newborns with neurological problems due to inutero
- 13 mercury exposure. And this essentially translates into
- 14 approximately 400,000 babies born each year with
- 15 potentially compromised physical development as well as
- 16 the inability to learn and interact with others normally.
- 17 So we've already heard about the fish consumption
- 18 advisories that have been issued by OEHHA for fish
- 19 contaminated water -- I'm sorry for mercury contaminated
- 20 water bodies in California. And a number of these
- 21 advisories prohibit consumption of any fish species while
- 22 others just specify consumption limits for some species.
- 23 And it's interesting to point out that a similar
- 24 pattern is evident nationally with some states placing
- 25 advisories on all waters within their jurisdiction. So

1 the assumption from these advisories is that those who

- 2 catch the fish from these contaminated water bodies will
- 3 then warn their families, especially children and pregnant
- 4 women about the dangers of eating this fish.
- 5 And unfortunately, we see that this does not
- 6 always happen, and particularly non-English speaking
- 7 communities. So as a result of members of these
- 8 communities, particularly pregnant women and women of
- 9 child-bearing age, tend to consume more contaminated fish
- 10 than is recommended by the advisories and place themselves
- 11 and their children at risk.
- 12 I'd also like to note that based on rough
- 13 estimates, approximately three-fourths of the fish that
- 14 Americans eat are actually of marine origin, from
- 15 commercial sources not from locally caught sources. And
- 16 these are not covered by the OEHHA advisories.
- 17 The U.S. Food and Drug Administration has
- 18 recently placed the public on alert regarding consumption
- 19 of a handful of commercially caught fish, but so far the
- 20 FDA has not been testing fish for mercury levels as
- 21 frequently or on as many species as we would think it
- 22 would be necessary to protect the public. So in the
- 23 future, the list will likely grow.
- 24 All of this evidence points to the fact that in
- 25 the long term fish advisories are not adequate mechanisms

1 for protecting public health, and instead the prevention

- 2 of mercury pollution and eventual elimination of manmade
- 3 mercury or anthropogenic mercury use are the only viable
- 4 means to protect our children and ourselves from this
- 5 potent neurotoxicant.
- 6 However, because scientists now estimate that
- 7 once all manmade mercury releases have stopped, it will
- 8 take at least 15 years for mercury levels to go down to
- 9 the point where fish is safe for all to eat. It is
- 10 imperative that effective consumer outreach is taken
- 11 immediately.
- 12 Clean Water Action strongly supports the most
- 13 stringent mercury waste management scheme proposed by the
- 14 Department, and encourages the Department to recommend
- 15 option number 1 as discussed on page 94 of the draft
- 16 report, which classify all mercury containing waste,
- 17 including naturally occurring sources, as hazardous. We
- 18 see this approach as being appropriate for a number of
- 19 reasons.
- 20 It's precautionary in nature and will be the most
- 21 protective to both public and ecosystem health, and we see
- 22 that this is warranted. It would remove mercury leaking
- 23 waste from municipal landfills, which are known to leak
- 24 and also to emit methyl mercury similar to the federal
- 25 list waste classification, and it would also circumvent a

1 potentially problematic risk analysis process, and also

- 2 the development of regulatory thresholds which may not be
- 3 protective.
- 4 However, at the core of any decision to further
- 5 regulate mercury, there needs to be an understanding that
- 6 pollution prevention, the development of products that
- 7 offer nonmercury alternatives, and a focus on manufacturer
- 8 responsibility is critical, if we're to achieve true
- 9 reductions.
- 10 With all of the scientific knowledge that we've
- 11 accumulated about mercury's toxicity, its global mobility,
- 12 and its increasing prevalence in our world a zero
- 13 emissions goal seems the only feasible option to
- 14 undertake.
- 15 And to achieve this, we must cleanup existing
- 16 mercury contamination. We must cease the sale of new
- 17 mercury ladened products and we must capture and retire
- 18 the mercury that is currently in our use stream. And to
- 19 this end, we're extremely concerned that both the draft
- 20 report and the management schemes outlined within it focus
- 21 solely on recycling of mercury as opposed to its ultimate
- 22 phase out.
- 23 The report accurately points out that for
- 24 individuals, households, businesses and industry, it is
- 25 currently easier to dispose of mercury containing wastes

1 than to recycle it. However, if the Department is going

- 2 to move forward with the effort of collecting mercury from
- 3 the waste stream it must clearly outline the plan of what
- 4 will be done without mercury once it's amassed.
- 5 With U.S. mercury lines long out of production,
- 6 we rely on secondary mercury for products, as was
- 7 discussed earlier. Yet even in this scenario, the United
- 8 States uses far less mercury than it has on hand. And so
- 9 what happens is that the U.S. shifts its mercury surpluses
- 10 abroad. And as a result, it just creates or exacerbates
- 11 the same types of problems elsewhere that we face in the
- 12 United States.
- 13 And, in fact, given the mobile nature of this
- 14 pollutant, especially when it's airborne, our export of
- 15 mercury inevitably returns to pollute our own environment
- 16 over time. And so regulatory mechanisms need to shift
- 17 from recycling mercury from waste to actually collecting
- 18 it and placing it into a safe, long-term storage.
- 19 And for those products like mercury containing
- 20 fluorescent light bulbs that have no viable substitutes,
- 21 we would recommend that high capture rates with economic
- 22 incentives, such as the bottle return deposit be
- 23 instituted as part of these regulations.
- 24 In cases where manufacturers persist in producing
- 25 nonessential mercury products where there are viable

1 alternatives, such as in the case of mercury containing

- 2 thermostats, we strongly support actions to either ban
- 3 sale of these products or to ratchet down the allowable
- 4 levels of mercury in these products over time. And there
- 5 have been laws passed in other states to reflect these
- 6 measures.
- 7 However, in all cases where there are mercury
- 8 containing products that remain in use over long periods
- 9 of time, such as thermostats or in cars, manufacturers
- 10 should be made to assume physical or financial
- 11 responsibility for assuring a 90 percent capture rate of
- 12 mercury.
- 13 We feel that only by completely phasing out the
- 14 existence of manmade mercury can we be assured that this
- 15 cycle that we're living in now of emissions, contamination
- 16 and public health threats will be broken.
- 17 Coupled with the primary management strategy of
- 18 classifying all mercury-containing wastes as hazardous,
- 19 the Department should focus on utilizing a combination of
- 20 hazardous waste management options that would result in
- 21 the most feasible implementation of what we see as strict
- 22 regulations.
- In concept, we support the Department's plan to
- 24 recommend using the universal waste rule management
- 25 standards when they're applicable, and also to phase

1 implementation to allow necessary time for product

- 2 substitutes and infrastructure to be developed.
- 3 However, because of mercury's known volatility,
- 4 we question the Department's proposal to dispose of
- 5 collected mercury waste in landfills, even those with a
- 6 Class 1 rating. I'm under the understanding that there is
- 7 a land disposal restriction on mercury, and this was not
- 8 discussed in the report. And I'm not that familiar with
- 9 the details of these regulations, but I'm wondering if
- 10 that can be addressed at some point.
- 11 And again instead of we see the structure of
- 12 these regulations as framing the collection of mercury and
- 13 its capture on a permanent basis as opposed to it being
- 14 Captured and recycled and put back into reuse.
- 15 Clean Water Action also supports a formal
- 16 cooperative interagency effort to tackle this issue. As
- 17 evidenced by the draft report and also from the
- 18 presentations we heard from the various agency
- 19 representatives this morning, mercury pollution is a
- 20 multimedia problem, and it seems like it really requires a
- 21 coordinated effort on the part of a number of CalEPA
- 22 departments.
- 23 We see an interagency task force having the
- 24 ability to broadly and effectively regulate the range of
- 25 media that are contaminated by mercury, to closely monitor

1 the success of this regulatory framework, to disseminate

- 2 public information and to pay close attention to actual
- 3 public exposure.
- 4 This sort of task force we think would be an
- 5 effective tool and we strongly support its formation as
- 6 part of this rule-making process.
- 7 We believe that any regulations that are finally
- 8 promulgated on this issue must also be coupled with a
- 9 comprehensive, public education campaign to educate
- 10 consumers and retailers specifically about the mercury
- 11 problem.
- 12 One complicating factor I see arising is that
- 13 even if a waste or a product is classified as hazardous,
- 14 if it's something that's used commonly by the public at
- 15 large, there's a strong chance that it's not going to be
- 16 disposed of properly. This is already evident with
- 17 examples of common products like thermometers and most
- 18 fluorescent lamps and also with dental amalgam, all of
- 19 which are hazardous wastes at this time. They continue to
- 20 be disposed of at municipal landfills or released into
- 21 waters through POTWs.
- 22 Everyone in this room is probably familiar at
- 23 least in concept with the hazards of mercury exposure to
- 24 human health and particularly that of infants and
- 25 children. For the past year or so, Clean Water Action has

1 been conducting workshops to a broad range of communities

- 2 with the goal of educating people about the linkages
- 3 between environmental toxin exposures and learning
- 4 behavioral and developmental disabilities in children.
- 5 So far mercury has actually been a focus of these
- 6 workshops. And what I have seen is that most people are
- 7 not as lucky as we are to be well acquainted with the
- 8 dangers of mercury. They do not know that the fish that
- 9 they consume regularly may pose a threat to their health,
- 10 to the health of their unborn baby and also to the health
- 11 of their young children.
- 12 They are unaware most often of the connection
- 13 between the thermometers that they might use to ensure
- 14 that their child is healthy after a bout with the flew and
- 15 the developmental disorders that can arise in their kids
- 16 as a result of these thermometers breaking and disposing
- 17 of them.
- 18 So, again, a comprehensive public education
- 19 campaign that outlines the devastating health effects of
- 20 mercury, informs people that the product they own contains
- 21 mercury and provides specific disposal options that are
- 22 community oriented is critical if we are to succeed with
- 23 reducing our environmental mercury burden.
- 24 There are existing projects out there right now
- 25 in the environmental community such as the Clean Car

- 1 Campaign, local thermometer exchanges, also the work of
- 2 organizations Like Health Care Without Harm, who focus on
- 3 the health care community.
- 4 And all of these point to the fact that once
- 5 people, and even corporations, become aware of the mercury
- 6 problem, they're willing to take action and to implement
- 7 mechanisms such as proper disposal of products, removal of
- 8 mercury relay switches from cars, and revising purchasing
- 9 plans.
- 10 So the recommended option for dealing with
- 11 mercury waste that is outlined in this report should
- 12 really serve to augment people's knowledge about this
- 13 issue if its goals are to be met.
- 14 Californians have reaffirmed their commitment to
- 15 environmental mercury reduction by supporting the passage
- 16 of SB 633, which we heard about earlier during the past
- 17 legislative session.
- 18 So we now join a number of other states like
- 19 Minnesota, Vermont and Oregon just to name a few that are
- 20 proactively tackling the mercury problem.
- 21 In spite of existing hazardous waste regulatory
- 22 schemes for mercury containing waste, past and current
- 23 activities have resulted in unacceptable levels of
- 24 contamination that we see today. So the Department now
- 25 has an opportunity to promulgate regulations that will

- 1 have true lasting effects by actually removing mercury
- 2 from the use stream and properly disposing of existing
- 3 mercury laden wastes.
- 4 So the ultimate goal of these regulations should
- 5 be zero emissions. And we believe that listing all
- 6 mercury waste as hazardous will create strong incentives
- 7 for manufacture to rely on nonmercury source materials and
- 8 to invest their dollars in the development of product
- 9 alternatives.
- 10 We also believe that if they were making an
- 11 informed choice, most consumers would opt to purchase a
- 12 product that is not hazardous as opposed to one which
- 13 contains a powerful toxin that could potentially harm
- 14 their children.
- 15 So we look forward to working with the Department
- 16 on these regulations as they're being developed and I also
- 17 thank you for the opportunity to invite me to speak today.
- 18 DIRECTOR LOWERY: All right. Thank you for your
- 19 comments and thank you for coming.
- Mr. Magavern.
- 21 MR. MAGAVERN: Good morning. I wanted to join
- 22 those who have commended the Department for this
- 23 pre-regulatory process. I think not only is the report a
- 24 very useful document, but I think it's a good idea to have
- 25 this kind of workshop before you actually go into the

- 1 proposed regulation stage.
- 2 And although I'm sure you can't devote this
- 3 amount of resources to all other issues, this might be a
- 4 good model for addressing some of the other most hazardous
- 5 of the substances that you regulate.
- 6 And we at the Sierra Club we're also supporters
- 7 of the Mercury Reduction Act, SB 633. But during that
- 8 process we're well aware that it was only addressing some
- 9 of the problems and that we need to have a much more
- 10 comprehensive overhaul of the way that we regulate mercury
- 11 in the State of California, and I think your proposal goes
- 12 a long way towards doing that.
- 13 The Sierra Club's position on mercury is that we
- 14 need to reduce and eventually eliminate sales of new
- 15 products containing mercury. Secondly, we need to collect
- 16 the mercury that we currently have out in the world, and
- 17 third to clean up the messes that we have, the legacy
- 18 that's been handed down to us.
- 19 And I think that this rule would help to promote
- 20 all three of those goals. Ultimately, we do want to have
- 21 the goal be zero emissions an zero discharge.
- 22 We endorse the proposal that all mercury
- 23 containing waste be treated as hazardous. Mercury clearly
- 24 is a hazardous product. And when it is a waste, it is
- 25 hazardous. We should not treat it as anything but that.

1 It doesn't make sense to have a threshold of when

- 2 mercury becomes hazardous. As we've heard from some of
- 3 the other witnesses, that threshold would have to be
- 4 minuscule, and in light of new data, would have to be
- 5 lowered. It probably is not feasible to have that kind of
- 6 threshold, and so we should just say if it has mercury in
- 7 it, it's hazardous.
- 8 And we've already heard a lot about the risks
- 9 presented to our health by mercury. And I think Lena did
- 10 a good job of establishing that so I won't repeat that,
- 11 but just give from my personal life an example of how
- 12 bioaccumulation and biomagnification really hit home.
- 13 This past Saturday was November Tuna day in my
- 14 household. And what that means is that my children, who
- 15 are both under seven, really love to eat Tuna Fish, but
- 16 because the amount of mercury that can be found in canned
- 17 tuna, we limit them to eating tuna one day a month. And
- 18 so they'll say can we have our monthly tuna now.
- 19 I really wish that we had a situation where
- 20 children's food was not so contaminated that we had to
- 21 regulate it this way. And as Lena said, most consumers
- 22 are clearly not aware of the amount of mercury that is or
- 23 could be in their Tuna and other population fish, and so
- 24 the risks are really out there.
- One objection that was raised to the strongest

1 regulatory option is that there might be some situations

- 2 where it would present practical difficulties, if you
- 3 treated all mercury-containing wastes as hazardous.
- I believe that your proposal includes the
- 5 possibility of having exemptions. And I think that as a
- 6 general rule you should say it's hazardous waste, you
- 7 leave open the possibility that you could have narrowly
- 8 tailored exemptions.
- 9 And so, for example, the case was given of
- 10 CalTrans in their fill operations having some mercury, I
- 11 believe you already allow CalTrans to treat their
- 12 lead-containing wastes as non-hazardous under certain
- 13 circumstances and could do the same for mercury.
- 14 Obviously, we wouldn't want to have huge
- 15 loopholes, but I think it makes sense to have a general
- 16 rule and then have the possibility of granting exemptions
- 17 as necessary.
- 18 We do know that, as a rule, all landfills leak,
- 19 and so we should not count on the ability of landfills.
- 20 And I know there have been great advances. And, you know,
- 21 not to slight the operators of those landfills, but we
- 22 should not count on the ability of those landfills to
- 23 contain all the wastes.
- 24 Also, I know that it's kind of surprising to hear
- 25 an environmentalist to say anything bad about recycling,

1 but when it comes to mercury, we do already recycle more

- 2 on an annual basis in this country than we use, and we, as
- 3 Lean said, we don't want to be exporting our poisons to
- 4 other countries, particularly in the developing word where
- 5 we know that the controls would not be as stringent as
- 6 they are in this country.
- 7 So the emphasis should really be on collecting
- 8 the mercury that is out there and getting those mechanisms
- 9 into place. And I want to suggest that there may be four
- 10 different kinds of regulatory scenarios that you need to
- 11 look at in CalEPA broadly. And as other speakers have
- 12 said, this problem really does require a cross-media
- 13 approach that many of the different boards and departments
- 14 in CalEPA should address. And certainly one of the
- 15 reasons for having the CalEPA agency in putting you all
- 16 here in this wonderful new building was to have the
- 17 opportunity to work together, and I really think that
- 18 opportunity is here on this issue.
- 19 The four different kinds regulatory scenarios
- 20 that I'll suggest are direct discharge to water which
- 21 clearly would be mostly in the province of the Water
- 22 Board, consumer goods, which is an issue, I think, you
- 23 should work with the Waste Board on. And we have talked
- 24 and we'll be talking more about that. Industrial waste
- 25 contaminated with mercury is really squarely within the

- 1 province of DTSC, I believe.
- 2 And there also are some kinds, fourthly, of
- 3 substances where we're not sure, at this point, whether
- 4 it's classified as a waste or it isn't. So, for example,
- 5 when buildings are demolished, you often have mercury left
- 6 over particularly from the thermostats.
- 7 And right now I don't think it's clear that
- 8 that's being classified as hazardous waste. I think
- 9 that's an area that really needs to be looked at.
- 10 As I said, I think ultimately we need to be
- 11 looking at how we can collect and store safely the mercury
- 12 that is currently in our environment, so that when we
- 13 isolate it and protect public health and the environment
- 14 in the long term.
- And so I think there really needs to be further
- 16 study on what's the best way to do that. I don't think we
- 17 know, at this point, what it is, but we certainly don't
- 18 want to put the mercury someplace where it's not
- 19 retrievable and could leak out into the environment. We
- 20 need to have it be in a place where it can be monitored
- 21 and can be accounted for.
- I also just want to say since I've been talking
- 23 about trying to prevent pollution by reducing and
- 24 eventually eliminating the use of products containing
- 25 mercury, that we should first do that for the products

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 where we know there's a safe substitute available, and

- 2 that was really the goal of SB 633.
- 3 Although, I don't think it captured all the
- 4 products, but some of the ones that it was the easiest,
- 5 the most feasible to replace.
- I think we need to go beyond that, but I also
- 7 want to recognize that clearly there is an important use
- 8 for fluorescent lighting. I've worked on energy issues
- 9 for many years. I've been using compact fluorescents for
- 10 more than ten years and recommending them to other people.
- 11 And we clearly don't want to establish disincentives to
- 12 using energy efficient lighting, both because we have
- 13 clearly had an electricity problem in this State and also
- 14 had a situation in other states where most of the
- 15 electricity that's generated comes from burning coal,
- 16 which is dirty in all kinds of ways including the fact
- 17 that it releases mercury when burned.
- 18 So I think that we ultimately want to get to a
- 19 point where we're not using any mercury containing
- 20 products, but the kind of phased in implementation
- 21 suggested in your report makes sense. We need to develop
- 22 incentives for producing safe alternatives to mercury in
- 23 order to reach that end goal.
- I think Mark is going to talk and has much more
- 25 expertise than I do, on the issue of collection. Clearly,

1 we need to make a lot of progress in that area. Just this

- 2 morning before coming over here, I called the local
- 3 Sacramento household hazardous waste collection program,
- 4 because I have some items including some mercury
- 5 containing items that I want to be treated as hazardous
- 6 waste. I don't want to throw away my garbage.
- 7 And I guess the good news, in a sense, is that
- 8 their schedule is so busy that, you know, they can't make
- 9 an appointment for me to take my waste there for some
- 10 weeks. On the other hand, I think the bad news about that
- 11 is that most people are not going to be going to the
- 12 trouble of making an appointment. It can only be two days
- 13 a week. You've got to drive somewhere to drop off your
- 14 stuff, so we need a much better infrastructure in place
- 15 and we need, as Lena said, to have a consumer education
- 16 program so that people know that there is mercury in these
- 17 products, and that it is hazardous and should be treated
- 18 that way.
- 19 That's one reason why we have consistently
- 20 supported labeling products that contain mercury. So I'll
- 21 wrap it up there, but I look forward to dialogue later and
- 22 being involved in this process as you move further into
- 23 the regulatory stage.
- Thank you.
- DIRECTOR LOWERY: Thank you. I have one question

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

```
1 I'd like to ask you about. And that is, when you're
```

- 2 advocating any mercury standard, how do you address the
- 3 one molecule concern that as our detection gets better,
- 4 products which have incidental mercury in it might then be
- 5 classified as hazardous under this proposal?
- 6 MR. MAGAVERN: I would suggest on a case-by-case
- 7 basis that if you have a product containing incidental
- 8 mercury and the case can be made that it is such a
- 9 minuscule amount and there is not a safe substitute for
- 10 it, it can't be phased out, and you're convinced that it's
- 11 not going to escape into the environment, to the extent
- 12 it's going to present a public health risk, exemptions
- 13 could be granted, but I would be very wary of any
- 14 wholesale exemptions, because I think what we've seen with
- 15 other substances is we go too far and allow far too much
- 16 of a hazardous substance to get out into the environment,
- 17 certainly that's the case with radioactive substances.
- 18 DIRECTOR LOWRY: All right. Lena, do you have
- 19 any thoughts about that, beyond what Bill said?
- MS. BROOK: I agree with Bill's sense that on a
- 21 case-by-case basis is appropriate, but it also sort of
- 22 depends on what type of -- you know, whether you're
- 23 talking about a product, whether you're talking about, you
- 24 know, a situation like an automobile that has a mercury
- 25 switch in it that, as you know, relative to the size of

1 the automobile the mercury, is small et cetera, et cetera.

- So I think that you'd have to really frame the
- 3 regulations to look at the substance and how mercury is
- 4 sort of fits within the overall composition of that as
- 5 opposed to just looking at the component of mercury in and
- 6 of itself.
- 7 DIRECTOR LOWRY: Okay. Thank you.
- 8 Mr. Murray you can talk about any range of issues
- 9 you want to talk about including my question.
- 10 MR. MURRAY: Sure. Mark Murray the Executive
- 11 Director of Californians Against Waste. And as the
- 12 director mentioned, I have, primarily for the last decade
- 13 and a half worked on solid waste and recycling issues.
- 14 And so I don't have the same level of expertise
- 15 frankly as your staff or some of the other panelists on
- 16 this issue.
- 17 However, I do think that we have two areas I want
- 18 to focus on that I think we may have a contribution to
- 19 make. One is that this material is going to landfill.
- 20 And as much as we love our landfills all of our landfills
- 21 ultimately leak. And so it's appropriate that we be very
- 22 concerned about the materials we put in those landfills
- 23 and recognize that it's not a permanent home.
- 24 Secondly, we have had some success in this State
- 25 in terms of diverting from landfill, specific problem

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 materials. And, again, primarily focused on the solid

- 2 waste area, but I think that there may be an opportunity
- 3 to use some of that success and some of the experience
- 4 we've gained in diverting solid waste materials.
- 5 Frankly, materials that don't pose any threat to
- 6 public health and the environment the same way that
- 7 mercury does, we've done by applying standards of
- 8 manufacturer responsibility to those products, we've been
- 9 able to keep them out of landfills.
- 10 So I want to, in terms my comments, I'm going to
- 11 focus on some of those issues. But first just to, you
- 12 know, what brings us here to this issue I think that we
- 13 strongly support the assessment of the mercury hazard
- 14 that's in the report.
- 15 The threat of mercury to public health and the
- 16 environment is a function of both the individual toxicity
- 17 in individual products as well as the cumulative impacts.
- 18 And I think that that really is what's bringing us to the
- 19 table now in recognizing that maybe the standards that we
- 20 had in the past that made sense on individual products, it
- 21 may be appropriate in time to change those standards given
- 22 the continued cumulative effect.
- In general, I think that the states, while
- 24 important states current hazardous waste identification
- 25 criteria for mercury is haphazard, it's inadequate given

- 1 the cumulative impact and it's in need of an update.
- 2 And finally, the tolerable level of new sources
- 3 of mercury in the environment may be zero emissions. I
- 4 mean, there may not be an acceptable level of mercury in
- 5 our environment. And the assessment and the
- 6 recommendations and the report certainly concur with that.
- 7 So the bottom line is we strongly support the
- 8 banning of all mercury and mercury containing products in
- 9 landfills, and as a first step towards moving towards the
- 10 zero mercury emissions goal.
- 11 But recognizing that simply waving the magic
- 12 regulatory wand and designating all this material as
- 13 hazardous waste is not going to keep it out of landfills.
- 14 We've got lots of examples of hazardous waste materials
- 15 designated as such continuing to make their way into
- 16 landfills.
- 17 And so we recognize -- we view this regulatory
- 18 scheme as frankly a first step and want to just kind of
- 19 maybe weave through a couple of different items that have
- 20 been raised and maybe haven't been discussed.
- Number one, with the existing regulatory
- 22 framework, with the existing rules regarding mercury, some
- 23 manufacturers have responded to those standards and some
- 24 manufacturers have reduced the amount of mercury in their
- 25 products. It would be unfortunate if in this move to

1 designate all mercury as hazardous and therefore banned

- 2 from landfills, that we lost that market incentive that is
- 3 existing out there for some manufacturers prior to being
- 4 able to just completely phase out mercury, reduce that
- 5 amount of mercury.
- 6 So as we're looking at individual ways of
- 7 implementing policies to reduce mercury, I think we have
- 8 to recognize that some manufacturers have responded in the
- 9 past and we should look to building on those standards.
- 10 Obviously, one of the -- the 800-pound gorilla in the room
- 11 on this is fluorescent lamps. And recognizing that some
- 12 manufacturers have reduced the amount of mercury in their
- 13 lamps, we may decide that no amount of mercury is
- 14 acceptable, but as we're implementing that phase-in, I
- 15 think that those steps that some manufacturers have taken
- 16 should be recognized. We should be looking at policies
- 17 that maybe -- I think we can't walk away from this policy
- 18 without talking about advanced disposal fees to help pay
- 19 for the collection and infrastructure, to pay for the
- 20 public education that's needed and to pay for the cleanup
- 21 of mercury that's going to slip through the cracks.
- 22 Any kind of advanced disposal fee system can
- 23 recognize differential levels of mercury in similar
- 24 products. Similarly, the State can create purchasing
- 25 preferences that recognize differing levels of mercury in

- 1 products.
- I just don't want to leave this topic of -- given
- 3 the fact that there are some manufacturers that have done
- 4 exactly what we've asked them to do with regard to
- 5 reducing mercury and it's important that that be
- 6 recognized and be built on those incentives.
- 7 But ultimately we need to be talking about
- 8 banning mercury, phasing mercury containing products
- 9 completely. And in that regard, we've had some success in
- 10 California in terms of using the advanced disposal fee
- 11 concept as a way of not just paying for the collection of
- 12 material, but actually using it as a market incentive to
- 13 reduce the amount of the problem materials.
- In the State's bottling, can and recycling law,
- 15 we use a differential advanced disposal fee to send a
- 16 signal to the marketplace about the kinds of packaging
- 17 that we favor. Packaging that has a very high recycling
- 18 cost and low recycling rate, pays a higher advanced
- 19 disposal fee. It seems appropriate that as part of a
- 20 regulatory infrastructure, we look at an advanced disposal
- 21 fee systems that both helps to finance that collection as
- 22 well as send a signal to the marketplace in terms of what
- 23 level of -- in terms of achieving our mercury phase-out
- 24 goals.
- 25 DIRECTOR LOWRY: On the subject of advanced

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 disposal fees, do you think that the Department has

- 2 authority to impose them unilaterally.
- 3 MR. MURRAY: Unfortunately, I don't believe that
- 4 Department has the authority to implement advanced
- 5 disposal fees. Although, I think that there could be a
- 6 stretch of your authority, when you look at the amount of
- 7 time that is going into regulating these materials, I
- 8 think that -- you know, I think you could probably frankly
- 9 give it a shot, but we'd probably end up in the courts.
- 10 And what I'd rather do is this is a backdrop of pursuing
- 11 this legislation -- regulatory scheme frankly
- 12 simultaneously pursuing a legislative agenda that give you
- 13 the authority, and implement an advanced disposal fee as
- 14 well as a phase out of mercury containing products.
- 15 DIRECTOR LOWRY: All right. Did that wake
- 16 everybody up?
- 17 Go ahead.
- 18 MR. MURRAY: Frankly, that's why we're here. You
- 19 know, we're here on this issue because we see an
- 20 opportunity to keep a material that is contaminating
- 21 landfills today that is contaminating the environment
- 22 that's contaminating public health and we see this as an
- 23 appropriate material an appropriate product area for
- 24 advanced disposal fees which have worked in other areas.
- 25 In terms of -- I want to just touch on the

1 recycling issue. Normally, when we talk about material

- 2 recycling, we're talking about the benefits of diverting
- 3 that material from landfill and saving the resource. And
- 4 this is an instance where maybe this is a resource we
- 5 don't necessarily want to save. The primary goal is
- 6 diverting it from a landfill.
- 7 I think that using the term recycling in the
- 8 common way that the public recognizes it as a collection
- 9 mechanism may continue to be valuable. The public
- 10 understands that when they want to keep something out of
- 11 the landfill, they recycle that material. And I think
- 12 that for when we're communicating with the public, we're
- 13 communicating with manufacturers that's a valuable tool.
- 14 That doesn't mean that in this particular instance what we
- 15 want to do is save this material and reintroduce it into
- 16 the economy.
- 17 In this instance, recycling is our mechanism for
- 18 diverting it from landfill. The other item that's
- 19 identified in the report is recommendations, the idea of
- 20 applying the universal waste rule to mercury waste. We
- 21 recognize the need and support the need for having a
- 22 differential regulatory scheme for material recycling.
- 23 At the same time, it's important that we are just
- 24 as vigilant in our objectives of protecting public health
- 25 and the environment under the specific details of what

- 1 that universal waste rule scheme looks like.
- 2 Sometimes recycling establishments and collection
- 3 infrastructures can be just as threatening to the
- 4 environment as actually disposing of theirs. Just because
- 5 it's recycling doesn't necessarily make it an
- 6 environmentally friendly environment. If mercury can be
- 7 exposed to workers, to the public, to the environment, it
- 8 needs to be properly regulated.
- 9 DIRECTOR LOWRY: Are you suggesting then that
- 10 there could be more than one universal waste rule?
- 11 MR. MURRAY: Well, universal waste rule to me is
- 12 the notion that it's something less than the full blown
- 13 hazardous waste permitting process, but different wastes
- 14 get treated in different ways under the existing universal
- 15 waste rule and I think that that's appropriate.
- The way that we deal with mercury is going to be
- 17 different than way we've had to deal with lead, for
- 18 example just in terms of two hot issues right now.
- 19 So, you know, maybe just to wrap up, we strongly
- 20 support the assessment of the mercury problem. We
- 21 recognize that we support the recognition that we've got
- 22 to change the existing rules of the game. We support the
- 23 proposal to change those rules to the game, to recognize
- 24 all mercury waste as hazardous waste, but we also want to
- 25 note that it's important that we -- simply waving that

- 1 magic wand is not going to make the mercury go away.
- 2 We've got to continue to -- we've got to put an equal
- 3 parallel effort into developing that collection
- 4 infrastructure. That collection infrastructure can be
- 5 benefited by a universal waste rule scheme.
- 6 But ultimately we're going to need legislation
- 7 that phases out mercury containing products, that
- 8 establishes an advanced disposal fee on mercury products
- 9 to finance that collection and pay for its clean up as
- 10 well as for public education.
- 11 DIRECTOR LOWRY: Do you know of any other states
- 12 that has an advanced disposal fee on mercury products?
- MR. MURRAY: I'm not aware, but we've been the
- 14 first on a number of things, and I think other states are
- 15 expecting us to.
- 16 DIRECTOR LOWRY: All right. Thank you for your
- 17 valuable comments and thank you to the panel.
- Now, we had one other panel member Jane Williams
- 19 who phoned us from the Burbank Airport. I think she maybe
- 20 able to join us in the afternoon. We also have seven
- 21 industry speakers who would like to address us, which we
- 22 will do immediately after lunch taking into account
- 23 whether we can get Ms. Williams on first.
- 24 The agenda I have has us breaking at 12:15 for
- 25 lunch. And what I would suggest, although I'm open to

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 counter suggestions, is that we break now and come back at

- 2 1:00 o'clock instead of 1:30. Does that make sense to
- 3 everybody in the audience?
- 4 All right.
- 5 And also I'd like to thank Linda Janssen who's
- 6 been doing a great job with the technology here, and Jim
- 7 Markson, the head of our Public Participation Program and
- 8 the other folks with that program who have helped put this
- 9 together.
- 10 Thanks everyone for bearing with us this morning,
- 11 and we will see you promptly at 1:00 o'clock.
- 12 Someone will be remaining here in the room over
- 13 lunch, so not accepting liability, but you can probably
- 14 leave things in here and be secure that no one is going to
- 15 come and ransack the room during that hour.
- 16 (Thereupon a lunch recess was taken.)

17

18

19

20

21

22

23

24

1 AFTERNOON SESSION

- DIRECTOR LOWRY: Let's get started again.
- 3 Thank you all for coming back. I hope you had a
- 4 good lunch. We will proceed with the third panel on your
- 5 agenda. And I also understand that Jane Williams, one of
- 6 the environmental organization speakers has arrived at
- 7 Sacramento Airport and we're sending someone out to her.
- 8 What I would propose to do is have her give her remarks
- 9 before the scheduled time for comments from the floor.
- 10 We've got seven speakers lined up, a
- 11 distinguished group of people from industry. And I think
- 12 I've got them in order of speaking, I'll introduce them as
- 13 they are now and in fact Jane Williams has just come in.
- 14 Welcome Jane. What we're going to do is have you give
- 15 your comments at the beginning of the public session for
- 16 as long as you've got prepared.
- 17 We'll have the industry panel now. And I can't
- 18 remember his name but welcome as well.
- 19 (Laughter.)
- 20 DIRECTOR LOWERY: Pete Bleasby the director of
- 21 the Industry Relations and Standards Group for OSRAM
- 22 Sylvania Incorporated. He's Chairman of the Lamp
- 23 Manufacturers Committee of the Nation Electrical
- 24 Manufacturers Association, other wise known as NEMA. He's
- 25 been involved with lamp disposal issues since 1991.

1 We also have Pat Sullivan, the vice president of

- 2 SCS Engineers. He has a bachelors in ecology from
- 3 Harvard, 12 years of experience in environmental
- 4 consulting. By the way Congratulations to Harvard on
- 5 their perfect season.
- 6 He's specialized in solid waste management, not
- 7 Harvard but Mr. Sullivan. He's the vice-chairman of the
- 8 Rules and Regulations Committee of the Solid Waste
- 9 Association North American, a member of the waste industry
- 10 air coalition.
- 11 We have Paul Abernathy, the executive director of
- 12 the Association of Lighting and Mercury Recyclers,
- 13 represents lamp, ballast and electronic product
- 14 association of nationwide. It is a nonprofit organization
- 15 providing education and outreach on the universal waste
- 16 rule on recycling and attempting to divert mercury from
- 17 solid waste. Almost 30 years environmental industry and
- 18 owner/operator and business consultant. Also, active in
- 19 the federal universal waste rural development in many
- 20 states to promote recycling policies.
- 21 Patricia Becker is here as a senior technical
- 22 support professional from Phillips lighting. She is part
- 23 of the lighting Industry. She has been a part of the
- 24 lighting industry for 20 years, a member of the Aluminum
- 25 and Engineers Society of America for 20 years, and is the

1 Phillips technical support for the western region for five

- 2 years.
- 3 And we have Teresa Pichay, have I pronounced that
- 4 It properly, Pichay. She's the policy analyst for the
- 5 California Dental Association working for that association
- 6 for six years, previously worked with the local chamber of
- 7 commerce and other not-for-profit and professional and
- 8 industry associations. Mark Madden, co-chair of
- 9 California Institute of Scrap Recycling industries, Office
- 10 of the Governor in Oregon. Is that current or some time
- 11 ago?
- MR. MADDEN: Some time ago.
- 13 DIRECTOR LOWRY: All right. And now with
- 14 representing Schnitzer Steel in Oakland.
- 15 And finally Eric Almberg Treatment and Operations
- 16 Manager of a Saftey-Kleen Buttonwillow Incorporated. A
- 17 degree in biochemistry and employed at the class 1 site in
- 18 Buttonwillow since 1984, currently responsible for waste
- 19 acceptance and receiving activities, customer service and
- 20 treatment plant operations.
- 21 So thank you all for being here and we have you
- 22 scheduled pretty much for an hour and 45 minutes. Be as
- 23 brief as you can, but as illuminating as you can as well.
- 24 So Peter will you start.
- MR. BLEASBY: Thank you very much and good

- 1 afternoon.
- 2 (Thereupon an overhead presentation was
- 3 presented as follows.)
- 4 MR. BLEASBY: First of all, some general
- 5 operations on the report on the next slide.
- --000--
- 7 MR. BLEASBY: We think that the Department has
- 8 done an extremely good job of gathering the facts and
- 9 identifying the issues, and in particular in identifying
- 10 the issues in connection with lamps. And that is the need
- 11 to increase recycling of all mercury containing lamps and
- 12 at the same time to encourage the use of energy efficient
- 13 lighting.
- 14 It may not be appreciated energy efficient
- 15 lighting is the low-hanging fruit of any electrical
- 16 conservation measure. Now, mercury is used in energy
- 17 efficient lamps, because it is essential for the operation
- 18 of all fluorescent lamps and most high intensity discharge
- 19 lamps.
- 20 A high intensity discharge lamp is the kind of a
- 21 lamp you see outside in streetlighting and in some
- 22 commercial buildings and some industrial buildings.
- 23 Efficiency is, general speaking, about four times
- 24 that of an incandescent lamp, so that speaks for itself on
- 25 the environmental perspective.

```
1 Industry has not been idle with regard to
```

- 2 reducing mercury in the products. And since 1985 we've
- 3 gone through about an 80 percent reduction. The last time
- 4 that we surveyed this amongst the industry, the average
- 5 mercury content of a four-foot fluorescent tube was 12
- 6 milligrams. That was in 1999. If we did that today, it
- 7 would probably be less than ten milligrams.
- 8 We have a continuing commitment not only in the
- 9 United States but also in other parts of the world to
- 10 reduce mercury. For example, the European W triple E
- 11 directive has some source reduction initiatives. The
- 12 Canadawide standard is another. And the Great Lakes
- 13 binational toxic strategy is yet another of the firm
- 14 commitments made by the industry in the Americas and
- 15 worldwide.
- We are, at a point, where any further reductions
- 17 start to impair performance depending on product design.
- 18 Mercury content is designed for each lamp type to achieve
- 19 its rated life in all circumstances of use. Mercury is
- 20 consumed at a different rate within a lamp depending on
- 21 how it is used, if it's friction. If it's used indoors or
- 22 outdoors, what kind of ballast uses whether it's the comet
- 23 ballast or one of the older ballasts, always influence the
- 24 rate at which mercury is consumed in the design.
- 25 When I say consumed, I mean that the mercury is

1 being taken up by various parts of the lamp. There is

- 2 components. But the bit that interests us the mercury
- 3 that is left in the discharge in the air space in the
- 4 middle of the tube that is what gives us the efficient
- 5 source of ultraviolet radiation, and then ultimately the
- 6 efficient generation of light.
- 7 So we're interested in exactly how much is left
- 8 in the lamp at the very end of its life. And if it's not
- 9 sufficient, then the lamp will fail for mercury starvation
- 10 instead of one of the more traditional mechanisms.
- 11 DIRECTOR LOWRY: Can you help me where does the
- 12 mercury go to convert to non-mercury?
- MR. BLEASBY: Mercury will be absorbed mainly in
- 14 the white phosphor coating, but also in the electrodes at
- 15 each end, that's the filament at each end of the lamp in
- 16 the coatings of that filament and in the metal parts,
- 17 mercury is very reactive and this is why we have to judge
- 18 very carefully the amount of mercury so that there's
- 19 enough free mercury left in the discharge to take the lamp
- 20 to the end of its rated life under all circumstances of
- 21 use.
- 22 DIRECTOR LOWRY: Does it change chemical
- 23 composition or anything. It's all natural mercury?
- MR. BLEASBY: Yes, it does change mercury.
- 25 --000--

```
1 MR. BLEASBY: So for example it may be
```

- 2 environmentally preferable for us to increase high output
- 3 or to extend life versus trying to get the lowest mercury
- 4 content. How low can you go is not necessarily good for
- 5 the environment. And I've certainly seen installations of
- 6 super low electrolamps, that have caused considerable
- 7 problems in that all right.
- 8 We support the recycling of all mercury
- 9 containing lamps. First of all, from an administrative
- 10 point of view, it eliminates confusion on consumers, waste
- 11 haulers and landfill operators. If it's normal and white,
- 12 it belongs in recycling and not in the landfill.
- 13 It also eliminates complex and expensive testing.
- 14 It assists an emerging recycling industry by increasing
- 15 volumes and thereby stabilizing costs and hopefully Paul
- 16 Abernathy will address that in more detail.
- 17 It will certainly have no negative impact on our
- 18 commitment as an industry to reduce mercury content in our
- 19 lamps, which I referred to on the previous slide. It will
- 20 certainly reduce air and water releases via lamp breakage,
- 21 and it is the environmentally right thing to do.
- In 1994, my industry commented to U.S. EPA in
- 23 their proposals for the universal waste rule that an
- 24 appropriate strategy would be to permit the landfilling of
- 25 lamps and the recycling of lamps and to sunset the

1 landfilling at such time as they felt that recycling had

- 2 sufficient capacity.
- 3 It's taken about seven years for some of the
- 4 regulators to believe us, but nonetheless that is what we
- 5 suggested at that time.
- 6 --000--
- 7 MR. BLEASBY: Why recycling all lamps in
- 8 California is feasible. First of all, industry will
- 9 support recycling and has done so and will actively assist
- 10 in outreach.
- 11 A couple of points I'd like to mention there and
- 12 that there is a web site already in existence called
- 13 lamprecycle.org in which anyone can go onto that web site
- 14 and find out about the proper disposal of lamps anywhere
- 15 in the United States. Also sends them to a list of lamp
- 16 recyclers.
- 17 This also is a way that we persuade distributors
- 18 and retailers to do -- to advise consumers of lamps on
- 19 proper disposal procedures, once those have been
- 20 established.
- 21 There is certainly ample recycling capacity and
- 22 collection infrastructure already existing that can easily
- 23 be grown to accommodate any increases in demand. And
- 24 other states have certainly adopted similar policies, so
- 25 this is not a big precedent.

```
1 The list of states are Connecticut, Maine,
```

- 2 Minnesota, Rhode Island, and Vermont. It omits,
- 3 unfortunately a very important State, and that is Florida,
- 4 and they all have partial or total solid waste bands on
- 5 the disposal of lamps. They're either in effect now or
- 6 they will be shortly.
- 7 And it's interesting to note that Minnesota and
- 8 Florida were the first here. And Minnesota introduced its
- 9 requirements in about the 1993/94 time frame. It has
- 10 achieved 70 percent recycling rate without any advanced
- 11 disposal fees or labeling requirements. It's been done
- 12 simply by outreach and has been very, very successful.
- --000--
- 14 DIRECTOR LOWRY: What happens to the other 30
- 15 percent in Minnesota?
- MR. BLEASBY: I'm sorry?
- DIRECTOR LOWRY: What happens to the other 30
- 18 percent in Minnesota?
- 19 MR. BLEASBY: I think that's probably a question
- 20 for Minnesota, but I think probably the next slide will
- 21 illustrate that to some degree.
- 22 DIRECTOR LOWRY: All right.
- MR. BLEASBY: The major opportunity for
- 24 increasing the lamp recycling is in the commercial sector.
- 25 And by that I mean nonhouseholds. You'll see there from

1 the pie chart that households represents about 15 percent

- 2 of lamp use in California, and 85 percent from commercial
- 3 industrial institution and so on.
- 4 Currently only a very small percentage of those
- 5 commercial lamps are being recycled, estimated about 20
- 6 percent. And it is the disposal of these large quantities
- 7 of lamps, no matter how much luck they have in them that
- 8 gives us the problem of breakage and therefore emissions
- 9 to the environment.
- 10 And I'd like to mention that the auto shredder
- 11 waste problem that Corey Yep mentioned earlier this
- 12 morning in that in spite of the fact that the waste may
- 13 not technically be a hazardous waste, there's an awful lot
- 14 of mercury there that shouldn't be disposed of in that
- 15 matter.
- The costs sometimes are cited as a problem, but,
- 17 in fact, recycling costs are typically less than one
- 18 percent of the ownership costs of lamps over their entire
- 19 life. And in some cases in areas of high energy rates a
- 20 lot less than one percent. The most rudimentary energy
- 21 efficiency retrofit will put in the owner's pocket about
- 22 30 times the cost of recycling a lamp properly at the end
- 23 of life.
- --000--
- 25 MR. BLEASBY: Current testing protocol is a TTLC

1 test. This allows for unlimited amount of a mercury lamp

- 2 to be disposed of in landfills as long as the waste is
- 3 under 20 parts per million.
- 4 Now, we believe this creates a strong incentive
- 5 to produce lamps with a shorter life because it's a
- 6 question of how low can you go on mercury. And it creates
- 7 a strong disincentive to develop a smaller efficient
- 8 longer life lamps. And here I'm going to go over to the
- 9 podium because we haven't had a show and tell yet, but I
- 10 have one for you.
- I have here three types of fluorescent lamps.
- 12 Now they are the -- typically you would expect a
- 13 fluorescent Lamp to be four-foot long. These are the two
- 14 foot versions because airport security these days isn't
- 15 particularly friendly to bringing large tubes of glass on
- 16 board.
- 17 (Laughter.)
- 18 MR. BLEASBY: The lamp that most people will be
- 19 familiar with is the old style of, what we call, T-12
- 20 lamp. It's an inch and a half in diameter. It's a
- 21 relatively inefficient light source, and there's still
- 22 about 48 million of those in ceilings in California not in
- 23 this building I'm glad to say.
- 24 (Laughter.)
- DIRECTOR LOWRY: I'm looking up at what we have.

```
1 (Laughter.)
```

- MR. BLEASBY: The next step in efficiency is what
- 3 in this building, and this happens to be a clear lamp so
- 4 that you can actually see the mercury content, if you can
- 5 find it. But, in fact, this is the lamp that's used in
- 6 this building. This is a T-8, one inch diameter lamp.
- 7 Now, there is a progression in efficiency between
- 8 the larger diameter lamp and the smaller. But the latest
- 9 lamps out of the manufacturers' stables, all of them, is a
- 10 lamp called a T-5, which is only five-eighths of an inch
- 11 in diameter. And this is even more efficient than its
- 12 predecessors.
- 13 What is more, this lamp is designed to operate on
- 14 an electronic ballast. It's a high output version, so
- 15 that the light output from this lamp is as much as two of
- 16 these or two of these.
- 17 Now, if you think about this from the point of
- 18 view of resources, this lamp, the T-5, has only 21 percent
- 19 of the material content, and only nine percent of the
- 20 volume. Now, these things affect the manufacturer,
- 21 shipping, warehousing, handling, installation and
- 22 disposal. So it would seem that this is the
- 23 environmentally preferable lamp Compared with the two
- 24 predecessors.
- One of these will do the job of two of these or

- 1 two of these. And yet because California's TTLC test is
- 2 based on a mercury density, which is obviously higher in
- 3 this smaller lamp, this lamp becomes the hazardous waste
- 4 even though it is the most environmentally friendly. As I
- 5 only have one more slide, I'll do that from the podium
- 6 here.
- 7 --00--
- 8 MR. BLEASBY: We recommend that DTSC should act
- 9 swiftly to adopt a regulation that classifies all mercury
- 10 as hazardous and requires them to be recycled.
- 11 All mercury containing lamps should be included
- 12 in the universal waste program to make that processes
- 13 easier. And any broadening of initiatives to other
- 14 wastes, other than lamps, should not delay the expeditious
- 15 action on lamps.
- 16 Thank you very much.
- 17 DIRECTOR LOWRY: All right, thank you.
- 18 I think I'll hold questions and address them a
- 19 little bit later. I think Mr. Sullivan is next.
- 20 MR. SULLIVAN: Good afternoon, I'm Pat Sullivan
- 21 from SCS Engineers. I'm here today representing the
- 22 Municipal Solid Waste Landfill Industry and that would be
- 23 the so-called Class 3 landfills, where we see referencing
- 24 the DTSC Draft mercury report, and specifically the
- 25 disposal of waste in those landfills.

```
1 (Thereupon an overhead presentation was
```

- presented as follows.)
- 3 MR. SULLIVAN: Obviously, the question that
- 4 you're trying to answer, we're all trying to answer as it
- 5 pertains to municipal solid waste or the Class 3
- 6 landfills, is there a threat to the environment from
- 7 releases of mercury that are placed in those landfills?
- 8 As a general rule, the solid waste industry does
- 9 not want to see contaminants placed in their landfills.
- 10 They're ultimately responsible for any releases from that
- 11 site including long-term liability that can span 30 years
- 12 or greater even after the landfill is closed and they're
- 13 no longer gaining any revenue from that landfill.
- 14 However, we do not want to see any restrictions
- 15 or prohibitions placed on the disposal of things in
- 16 landfills that are based on data that we believe to be
- 17 flawed and do not really truly represent whether
- 18 landfill's are putting mercury into the environment.
- 19 Next slide, please.
- 20 ---00--
- 21 MR. SULLIVAN: I'm not going to spend any time on
- 22 who I am. I was introduced at the beginning. Let's move
- 23 to the next slide.
- 24 The sources of mercury that we'd be looking at
- 25 from the releases from a landfill, these potential sources

1 include mercury emissions from the working face of the

- 2 landfill, that is the point at which refuse is disposed
- 3 into the landfill; mercury emissions from landfill gas,
- 4 whether that landfill gas is uncontrolled or controlled,
- 5 that is mercury being entrained in the landfill gas, which
- 6 is primarily methane and in some way, shape or form being
- 7 emitted into the environment; and finally mercury
- 8 containing leachate, leachate from the landfill and
- 9 affecting groundwater beneath the landfill.
- 10 Those are the three categories that I believe are
- 11 addressed in DTSC's mercury report. And I'd like to make
- 12 a little commentary at least on the industry's view of the
- 13 information presented in the report as it they pertain to
- 14 those pathways of release.
- 15 Next slide.
- --o0o--
- 17 MR. SULLIVAN: In terms of mercury impacting
- 18 groundwater, we have several issues with the report as it
- 19 currently stands and the conclusions that are drawn from
- 20 the data that were reviewed for this report. And we find
- 21 them to be in someways misleading and in some ways
- 22 conflicting both with data sources presented in the report
- 23 itself as well as with data sources that weren't reviewed
- 24 for this report that are available from the industry.
- 25 There are several studies that are cited in the

- 1 report as being evidence that landfills are leaching
- 2 mercury into groundwater. However, in some of the cases
- 3 the studies seem to indicate that there is some release.
- 4 Other of the studies seem to indicate maybe there are not
- 5 releases of mercury into groundwater.
- 6 One of the major issues that we have is, there
- 7 seems to be no attempt made to determine whether we are
- 8 looking at a legacy issue, waste that has been disposed
- 9 into the landfills, older landfills and maybe possibly
- 10 those landfills have leached mercury into the groundwater.
- 11 Remember, this regulation, or at least the
- 12 proposals that are set forth in the report dictate what we
- 13 plan to do currently or into the future to stop these
- 14 materials from getting into the landfills and preventing
- 15 these leachate.
- So in other words, we're not sure that the old
- 17 data, the data that is reflective of old sites in some of
- 18 the legacies of the past are reflective of the landfills
- 19 of today and what those landfills might actually be
- 20 leaving in the environment.
- 21 DIRECTOR LOWRY: Your point would be that the
- 22 landfills are better built now than they were previously?
- 23 MR. SULLIVAN: Absolutely. And I'll get into in
- 24 more detail. One of the data sources that's cited
- 25 pertains to landfill leachate. And one thing that needs

- 1 to be remembered is pollutants do end up in landfill
- 2 leachate. The industry will never deny that fact. The
- 3 point is in some ways that's where want it to be, because
- 4 that leachate, particularly on today's control landfills,
- 5 is controlled and collected and does not leach into the
- 6 groundwater, so that the mere fact that mercury may be
- 7 found in leachate does not any way, shape or form mean
- 8 that that landfill has impacted groundwater with mercury,
- 9 and there needs to be distinction drawn between the two.
- 10 In terms of the mercury detections in
- 11 groundwater, in several of the cases that were cited in
- 12 the report, we've looked at the groundwater data and we
- 13 actually cannot see the difference between the so-called
- 14 detection that appears to be attributable to the landfill
- 15 and what might be considered background from mercury in
- 16 that same area, so that it really needs to be an
- 17 evaluation of -- the mere detection of mercury beneath our
- 18 landfill and the groundwater does not mean that mercury
- 19 came from the landfill itself. You need to look at the
- 20 background concentrations as well.
- In the area of emissions, EPA did several
- 22 reports. A 1997 study is cited in the DTSC report
- 23 recently as part of their urban air toxic strategy.
- 24 They've also evaluated sources of mercury.
- 25 Municipal solid waste landfilled ended up very

- 1 low on the list in the range of .001 percent or
- 2 one-one-thousandth's of a percent of the total mercury
- 3 emissions into the environment.
- 4 The DTSC report seems to, in some ways, ignore
- 5 that point and how low the mercury emissions from
- 6 landfills are and points to one single study, the
- 7 so-called Florida Landfill Study, as the tell-tale sign
- 8 that all the previous work must be in error and that
- 9 landfills indeed must be putting more pollutants into the
- 10 environment.
- 11 Well, the Florida study has some serious flaws.
- 12 Number one, it pertains to the fact that we're dealing
- 13 with a limited number of landfills, a couple of sites in
- 14 Florida, a snapshot in time, no information provided on
- 15 these landfills to say whether they're old sites, new
- 16 sites, have they taken waste, do they have a legacy of
- 17 other types of waste in those landfills to even know
- 18 whether the data that was derived from those studies said
- 19 it represents or can even relate to landfills in
- 20 California or could relate to the landfills that are
- 21 modern in today's world.
- 22 Also, there are some issues with analytical data
- 23 in the way the analyses were done. The EPA is actually
- 24 undertaken this study that I'll go into later on looking
- 25 at mercury emissions from landfills on a grander scale and

1 they actually chose not to sue some of the methods that

- 2 are used by the Florida study.
- 3 So I think we need to be careful with the Florida
- 4 study. And in my read of the Current DTSC report is that
- 5 seems to be the one black mark that's being used against
- 6 landfills to demonstrate the need they must be serious
- 7 sources of emissions. And, in fact, the previous data was
- 8 wrong and they are emitting more mercury into the
- 9 environment than we thought they were.
- 10 DIRECTOR LOWRY: When you say previous date being
- 11 wrong, are there studies which we cite as showing that
- 12 there is not a release into the air that we're disputing
- 13 in that report or because I don't remember reading that?
- 14 MR. SULLIVAN: Basically, you were citing the
- 15 1997 study that EPA did on mercury emissions. And where
- 16 landfills ended up significantly in my view low on the
- 17 totem pole in terms of the total amount of mercury put in
- 18 the environment.
- 19 And then a comment is made based on the review of
- 20 the Florida study in that well, maybe we've underestimated
- 21 the amount of mercury being put out by landfills based on
- 22 what we see in this Florida study.
- 23 What we're saying is you need to take a hard look
- 24 at the Florida study and you need to take an even harder
- 25 look at the other data that's available in the industry

- 1 that you did not review.
- 2 DIRECTOR LOWRY: Right. You have a list of those
- 3 studies and reports that you can provide to us?
- 4 MR. SULLIVAN: Certainly. We'll get into what
- 5 the industry is willing to provide to help this process
- 6 along.
- 7 But anyway, the final conclusion in looking at
- 8 the report where we felt the data were too limited and
- 9 could support the conclusions that you've drawn, you're
- 10 not quite there yet and there's a lot more data out there
- 11 that you didn't look at, that we think may change your
- 12 view on some of the issues here.
- 13 Next slide.
- 14 --000--
- MR. SULLIVAN: These are some of the things that
- 16 we like to mention, I'll try to be a little brief, in
- 17 terms of our conclusions, that we might have drawn from
- 18 the report and then also draw from the other data that we
- 19 have available in the industry.
- 20 There's been a lot of success in reducing the
- 21 amount of mercury. I think the report goes into good
- 22 detail on the successes in reducing the amount of mercury
- 23 going into landfills in the first place.
- I'm not sure the data that you've evaluated is
- 25 even reflective of that fact. And what I mean is, again,

1 if you don't know the landfill you're looking at and the

- 2 source of the data, you cannot tell what whether you're
- 3 looking at a legacy mercury that was placed in years ago
- 4 that is now being released to the environment, or is it
- 5 reflective of the current landfills of today that are
- 6 designed and operated in a lot more environmentally
- 7 conscious fashion.
- 8 DIRECTOR LOWRY: Is it your position that there
- 9 should be no restriction on the disposal of mercury in
- 10 municipal solid waste landfills in California?
- 11 MR. SULLIVAN: Not exactly. What we're saying at
- 12 this point is we do not believe that the data support that
- 13 conclusion at this time. However, if there is a
- 14 determination that indeed landfills are leaching mercury
- 15 at significant quantities, quantities that you feel are
- 16 worthy of regulation, then, again it's in all our best
- 17 interests not to let that mercury into the environment.
- 18 We want the decision to be made for the right reasons.
- 19 DIRECTOR LOWRY: Given the data that we do have,
- 20 put yourself in my Chair. What limits, if any, should
- 21 this Department put on, or the Legislature whatever, on
- 22 the disposal of mercury in the solid waste landfills Class
- 23 3 landfills in California? What standard should we apply?
- MR. SULLIVAN: We'd like to see a greater focus
- 25 on source reduction. This report seems to go $\operatorname{\mathsf{--}}$

1 DIRECTOR LOWRY: That's not the question. What

- 2 restrictions on receiving waste with mercury? Forget
- 3 source reduction all that. What should we stop from going
- 4 through the gait or what conditions should we put on it
- 5 from going through the gate of the landfills that you
- 6 represent?
- 7 MR. SULLIVAN: If your data -- you believe shows
- 8 that landfills leach mercury into the ground water --
- 9 DIRECTOR LOWRY: Yeah, suppose it doesn't.
- 10 Suppose we have all the data that you know about right
- 11 now, should we do anything?
- MR. SULLIVAN: In my view, at this point, after
- 13 making whatever efforts you made to stop the mercury along
- 14 the way, at a landfill that still arrives at the gate, I
- 15 believe can be disposed in a municipal solid waste
- 16 landfill, particularly the modern landfills of today
- 17 without significant threat of release to the environment.
- 18 DIRECTOR LOWRY: How many of the landfills in
- 19 California would qualify as a modern landfill that are
- 20 still operating, 100 percent, 50 percent?
- 21 MR. SULLIVAN: I think it's probably somewhere in
- 22 between the two, and every day gets more and more sites.
- 23 The way your report sites that many of the landfills in
- 24 California were actually built prior to Subtitle D and
- 25 then makes sort of an assumption that that must mean

1 they're still all unlined. That's not really true. They

- 2 may have a portion of the landfill that is unlined, it's
- 3 obviously closed. But the wastes that are going in today
- 4 and the wastes that you would be regulating if you decide
- 5 to make a decision here, are going into fully lined RCRA
- 6 subtitle D cells at those landfills.
- 7 So in reality, rather than a vast majority of the
- 8 landfills being unlined the current disposal at those
- 9 landfills is going into lined Subtitle D compliance
- 10 landfills. I really don't know the percentage, but I'd
- 11 put it in the 75 to 80 percent range.
- 12 And every day more of the older sites close or
- 13 they close an individual cell at site that's on line, and
- 14 the next cell that is permitted has to be RCRA Subtitle D
- 15 compliant. So every year you're going to see less and
- 16 less landfills that are unlined.
- 17 What the industry might consider would be looking
- 18 at the unlined sites and restricting the disposal of
- 19 wastes into the unlined landfills that are still in
- 20 existence and still taking waste versus a complete
- 21 restriction of all Class 3 disposal.
- 22 DIRECTOR LOWRY: I didn't mean to derail your
- 23 presentation.
- MR. SULLIVAN: That's okay. The other issue we
- 25 want to point out pertains to the amount of mercury

1 released from the landfills. Let's assume all these

- 2 things have happened. What is the amount of mercury
- 3 that's released from landfills via the various routes of
- 4 release versus the total amount of mercury that we believe
- 5 is being released into the environment causing the
- 6 problems that we all know are real, and where does that
- 7 put it on the scale? Does that put it very high on the
- 8 list. We think it will put it extremely low on the list,
- 9 and is that where the regulatory efforts should be focused
- 10 at the bottom tier of sources of mercury rather than some
- 11 of the larger sources of mercury that are clearly
- 12 identified in the regulatory documents. Without going
- 13 into those industries, we all know who they are.
- Where do landfills fall? We think we they fall
- 15 very low on that list. And we think the regulations maybe
- 16 should be reflective of the fact that as lot of the
- 17 regulations are, you go after the major contributors and
- 18 it has to be cost effective before you go all the way down
- 19 to the lower tiers. So that's an issue we're concerned
- 20 about.
- 21 There's a lot of industry data out there that
- 22 hasn't been reviewed, and we would welcome an opportunity
- 23 to provide that with the distinction that you need to look
- 24 at data that's reflective of the modern landfill that you
- 25 would be looking at in terms of future regulations on the

```
1 landfill industry.
```

- Next slide.
- 3 --000--
- 4 MR. SULLIVAN: We've already gone over this
- 5 point. We believe that actually most of the disposal here
- 6 in California is under RCRA Subtitle D, and that it's kind
- 7 of misleading again to say that because a landfill began
- 8 operation prior to Subtitle D, that it's still putting
- 9 trash into unlined cells. That is not the case. In fact,
- 10 it's actually the opposite case.
- 11 One thing that's not mentioned in terms of the
- 12 potential reduction or at least a change in the mercury
- 13 emissions at landfills is landfill gas air quality
- 14 regulations. The report mentions the California
- 15 Integrated Waste Management what regulations pertain to
- 16 landfill gas as a reason why landfill gas collection
- 17 control systems are put in place. That is, actually in
- 18 California particularly, a very minor reason why gas
- 19 system are put in.
- In fact, the major reason that those are put in
- 21 place are the air quality regulations. And now we have a
- 22 federal regulation that was promulgated in 1996 and is now
- 23 being implemented across the street that requires
- 24 landfills to put in gas collection control. And that
- 25 regulation as are a lot of the district level regulations

- 1 in California are focused towards the largest of
- 2 landfills. And that's an issue you need to look at.
- 3 The report indicates that maybe only 50 percent
- 4 of the landfills in California have gas collection
- 5 control, sort of us making another assumption that that
- 6 means 50 percent are uncontrolled and somehow 50 percent
- 7 of the mercury is being emitted without going through a
- 8 control system. That's really not true.
- 9 The largest of landfills taking the most waste
- 10 are the ones that are controlled. The ones that aren't
- 11 controlled are the smallest of sites. So they need to
- 12 look at the size of the facility not just the percentage
- 13 of the facilities that have control or don't have control.
- 14 And when we put all that together, we come to the
- 15 conclusion that the regulatory decisions that you've
- 16 looked at and I know there's a variety of them, but
- 17 particularly the one that pertains to not allowing any
- 18 disposal of mercury-containing wastes in a landfill. Even
- 19 if that were feasible, just from a logistical standpoint
- 20 to stop everything that goes into a Class 3 landfill, we
- 21 don't think the data or evidence that's presented in the
- 22 report supports that decisions at this time.
- Next slide.
- --o0o--
- MR. SULLIVAN: But, you know, with that in mind,

- 1 you know, there's a clear problem with mercury in the
- 2 environment that needs to be corrected. And if regulation
- 3 of a municipal solid waste landfill is one of those steps
- 4 that we see are necessary, the industry can live with that
- 5 as long as it's based on good since, and at this point we
- 6 don't believe that to be true.
- We'd like to see the focus instead of at the end
- 8 of the pipe, the landfill, we'd like to go back upstream
- 9 and look at source reduction and recycling. It's in all
- 10 our best interests to stop the contaminant, whatever it
- 11 be, mercury, other metals, organics, anything, we prefer
- 12 they don't end up at the gate. And so I'd like to see
- 13 that happen through the source reduction and recycling
- 14 first. But just because it comes through our gate,
- 15 whether or not we can put it in the landfill the decision
- 16 there should be based on good science.
- 17 Next slide.
- 18 --000--
- 19 MR. SULLIVAN: What we'd do, in support of this
- 20 process, we'd be glad to provide the data that I've
- 21 mentioned here, as much as we can. We'd like the DTSC to
- 22 specifically ask us for it, ask us through the trade
- 23 organizations --
- 24 DIRECTOR LOWRY: Consider it being asked now.
- 25 MR. SULLIVAN: -- and we'd like the opportunity

- 1 to provide that data.
- 2 DIRECTOR LOWRY: You have it.
- 3 MR. SULLIVAN: And with that in mind, though, we
- 4 want to make sure that we're able to make the distinction
- 5 between the -- we're concentrating on the current disposal
- 6 practices and the current requirements, and that we don't
- 7 hold us -- that we don't base a regulation that's going to
- 8 affect future disposal on data that's representative of
- 9 only past occurrences that are now no longer the case.
- 10 DIRECTOR LOWRY: Can you give me the intellectual
- 11 leap, which I'm having difficulty making, is there anyway
- 12 for us to measure in the future what's happening on the
- 13 outlook in the past?
- 14 MR. SULLIVAN: Sure there is. We've been
- 15 collecting data, particularly on landfill gas and
- 16 groundwater over time.
- 17 DIRECTOR LOWERY: But you've just told us not to
- 18 look at what's happened over time.
- 19 MR. SULLIVAN: Well, I'll get to that point.
- 20 We've looked at the data from the past to the current, so
- 21 we've been able to track, in some way, the implementation
- 22 of a variety of regulations that have occurred and how
- 23 they've changed our practices. And we've seen distinct
- 24 changes and improvements in the contamination.
- 25 For example, we have data for several -- a series

- 1 of sites in the southern California area that have been
- 2 looking at toxics in the landfill gas over about a 15-year
- 3 period.
- 4 Within that period is the RCRA Subtitle D and
- 5 State requirements to start diverting waste, load
- 6 checking. If you look at the data, you see a significant
- 7 decrease over time in the toxic concentrations in the
- 8 landfill gas. And we believe that's representative of the
- 9 fact that we stopped putting a lot of those waste streams
- 10 in the landfills.
- 11 So we go and we collect data that was on landfill
- 12 gas from the 1980s, which the EPA has actually done, we
- 13 think that overstates by a significant margin the toxics
- 14 that you're going to find in landfill gasses from the
- 15 waste that's put in from this point forward.
- 16 DIRECTOR LOWERY: It was my impression that you
- 17 were you opposed to diversion at the gate, which
- 18 apparently is responsible for this decreasing slope of
- 19 toxics in the gas that you just talked about.
- 20 MR. SULLIVAN: Well, I'm not sure the diversion
- 21 at the gate is the reason that the concentrations have
- 22 decreased. In fact, I would think that if you're relying
- 23 on the load check at the landfill to catch your
- 24 contaminants, that's not where more of them get stopped.
- 25 Where most have been stopped are at source reduction and

- 1 recycling. And it happens much prior to the gate.
- 2 And that's what we'd like to see the focus on.
- 3 It's worked on other pollutants. We think you can work on
- 4 mercury. So that's what we'd like to see.
- 5 DIRECTOR LOWRY: Okay, I understand your point.
- 6 MR. SULLIVAN: So the last point I want to make
- 7 this is that the U.S. EPA is actually right in the midst
- 8 of a project to collect additional data on mercury
- 9 emissions from landfills, it's called the CRADA project,
- 10 which is the Cooperative Research and Development
- 11 Agreement with the industries and with the EPA, to go out
- 12 to a series of landfills all over the country and mercury
- 13 is the major focus of this study as well as a few other
- 14 pollutants.
- That data will become available and we'd like to
- 16 at least make it known that this study is ongoing and that
- 17 the reason that study is ongoing is the EPA themselves
- 18 believes that the current, again, aren't reflective,
- 19 because they haven't updated it in a decade or more and
- 20 that they are now updating that data.
- 21 DIRECTOR LOWRY: Do you have an idea of when that
- 22 study will be completed?
- 23 MR. SULLIVAN: The field work is starting to
- 24 begin and will begin, I believe in the next several
- 25 months. When the data will be ready and when the final

1 report is ready, it is an EPA study, so it's going to take

- 2 its sweet time.
- 3 DIRECTOR LOWRY: All right.
- 4 MR. SULLIVAN: I'd guess we're a year away from
- 5 seeing something.
- 6 DIRECTOR LOWRY: All right.
- 7 MR. SULLIVAN: In conclusion, as I mentioned,
- 8 municipal solid waste landfills don't want see pollutants
- 9 in there because they're ultimately responsible for it,
- 10 and if there's a way to, through source reduction and
- 11 recycling, to limit the amount of any contaminant, whether
- 12 it be mercury or anything else from getting into the
- 13 landfills, we are for it.
- But we do not want to see the landfill industry,
- 15 in effect, receive a black mark for its supposed releases
- 16 into the environment unless the data support that
- 17 conclusion. And if the data do support it, whether it's
- 18 for an unlined landfill or, you know, whether all
- 19 landfills, you know, then we'll deal with the
- 20 ramifications. But in particular for the modern landfills
- 21 of today we don't believe the data will support a
- 22 conclusion that landfills should not be allowed to receive
- 23 any mercury whatsoever.
- 24 DIRECTOR LOWRY: All right. Thank you very much
- 25 for coming. We look forward to working with you.

```
1 Mr. Abernathy.
```

- 2 MR. ABERNATHY: Good afternoon.
- 3 (Thereupon an overhead presentation was
- 4 presented as possible.)
- 5 MR. ABERNATHY: It's always a challenge to follow
- 6 somebody who knows what they're taking about.
- 7 (Laughter.)
- 8 MR. ABERNATHY: Mr. Sullivan, I think did a good
- 9 job defending landfills.
- 10 I must open my remarks, though, by saying you've
- 11 missed the point, sir. The point is not so much about
- 12 what happens to mercury once it's in the landfill. It's
- 13 about what happens to mercury from volatile sources before
- 14 it ever gets to the landfill and before that 50 ton
- 15 compactor machines rolls over it and covers it with six
- 16 inches of daily cover.
- 17 --000--
- 18 MR. ABERNATHY: I'm going to confine most of
- 19 these remarks to lamps, because lamps are what I deal with
- 20 for a living. They're also the most volatile, the most
- 21 fragile source of mercury. They're also almost
- 22 everywhere. And while the remarks about the solid waste
- 23 industry may be true, the solid waste industry, in my
- 24 opinion, has not done a very good job of actively
- 25 attempting to divert lamps from the garbage.

1 I have a photograph of a garbage truck in Alameda

- 2 county dumping a lode of lamps in the municipal landfill
- 3 there. Now, I happen to know that landfill and it's a
- 4 pretty good one. But when lamps came out of that truck
- 5 and started breaking by the dozens and by the hundreds and
- 6 then when that compactor rolled over those boxes and broke
- 7 hundreds more, the mercury in the leachate and the mercury
- 8 in the methane wasn't the big issue. The issue was where
- 9 did that mercury go before the daily cover got there.
- 10 --000--
- 11 MR. ABERNATHY: Here's some areas where we have
- 12 haven't seen studies. We can talk about studies and we
- 13 can challenge studies all day. I would be very careful
- 14 before I challenged Dr. Steve Lindbergh's studies though,
- 15 because Steve Lindbergh who is with Oakridge National Labs
- 16 and assisted with the Florida studies for the last several
- 17 years is indeed one of the more knowledgeable scholars on
- 18 mercury and what happens to it when it starts migrating.
- 19 Steve Lindbergh's studies talk about what happens
- 20 to mercury in the dumpster, in the garbage can, in the
- 21 compactor truck, what happens to mercury at the working
- 22 phase, what happens to mercury at the transfer station,
- 23 what happens when that rear loader backs up to the
- 24 transfer station and dumps its load out on the floor
- 25 before the bulldozer pushes it into the separation

- 1 equipment. That's where the mercury is an issue.
- 2 So, in deed, you might not see mercury in the
- 3 groundwater from a landfill as being the issue, but indeed
- 4 it is the issue because of its potential to be released
- 5 and migrate down wind.
- 6 How many studies have we seen that looked at
- 7 mercury coming out of solid waste containers, rolloffs,
- 8 compactors, rear loaders, side loaders? How many studies
- 9 do we have that shows what happens when hundreds of
- 10 millions of lamps break in dumpster and rolloffs and then
- 11 it rains?
- 12 What studies do we have that talk about what
- 13 happens when the building janitor at night breaks the
- 14 lamps into the garbage can, because that's what his job
- 15 description says he's got to do? We don't have those
- 16 studies.
- 17 So I submit that while the solid waste industry
- 18 has an important role to defend its integrity, that's not
- 19 the pathway that mercury is following vis a vis the need
- 20 to control mercury from lamps.
- 21 --000--
- MR. ABERNATHY: Now, in California, we've had a
- 23 pretty low recycling rate for the last -- well, for as far
- 24 back as I can recall, over 12 years. We've been, up until
- 25 last year, we were only recycling about ten to 12 percent

1 of all the lamps in the State, and that left a pretty high

- 2 noncompliance rate. And I'm going to, in a couple
- 3 minutes, I'll talk about, at least my theory, as to why
- 4 that recycling rate is somewhat low here in California.
- 5 ---00--
- 6 MR. ABERNATHY: DTSC believes that as many as 70
- 7 percent of all the lamps in this state may be generated by
- 8 either households or conditionally exempt small quantity
- 9 generators and therefore might not even be impacted by the
- 10 conditions of the Federal Universal Waste Rule.
- 11 When this State proposed its own universal waste
- 12 rule, it proposed some additional stringency, which we
- 13 like, because it would have closed the loopholes for
- 14 CESQGs, and that was one way we thought that the recycling
- 15 rate might actually begin to increase other than just by
- 16 some token amounts.
- 17 When we look at the criteria though, we see that
- 18 all we've ever used is TCLP, TTLC, STLC. And we've used
- 19 these numerical targets, and we've seen an overwhelming
- 20 number of scientists and analytical people around the
- 21 country complain that lamps don't behave as chemists
- 22 predict they would behave in a laboratory.
- 23 I attended a seminar with Dr. Simmons from DTSC
- 24 about two years ago in Washington where EPA had a similar
- 25 workshop. And Dr. Simmons was one of the people in the

- 1 room who was nodding his head with others and said you
- 2 know mercury is an anomaly. It doesn't do what you think
- 3 it's going to do. It doesn't act like you think it's
- 4 going to act. It doesn't test in concentrations that you
- 5 would predict, because it's an anomaly.
- 6 So our bottom line is or the bottom line is we
- 7 need to be dealing with levels of mercury that are more
- 8 consistent with the ranges that some of the people talked
- 9 about this morning, some of the State agency people, where
- 10 we're looking at a range of micrograms nanograms, we're
- 11 looking at parts per billion and parts per trillion.
- 12 That's where mercury becomes most relevant in the
- 13 environment. That's where we see how lamps breaking in
- 14 indiscriminantly in solid waste containers contribute to
- 15 the TMDL.
- So what I've said here is that, yes, this is a
- 17 apples and oranges. TMDL is not the same as TCLP. But if
- 18 you look at table 1.4 in the report, there's a very nice
- 19 summary of a whole bunch of different government agency
- 20 standards, federal drinking water, EPA OEHHA, ocean
- 21 standards, it oes on and on and on.
- In all cases, those numbers are extremely low
- 23 relative to the amount of mercury that is in any one
- 24 mercury lamp.
- Just a short aside while I'm on that page, which

- 1 is page 23 of the report, I believe there is still a typo
- 2 on that page regarding the units for table 1.4. It says
- 3 units are in micrograms per liter and then it shows
- 4 symbolically, micrograms per milliliter. So I believe
- 5 there's a few zeros missing somewhere on that, which even
- 6 amplifies my point even more.
- 7 Next slide, please.
- 8 --000--
- 9 MR. ABERNATHY: When we have a universal waste
- 10 rule that people pay attention to, we have seen in the
- 11 last couple of years an 80 percent increase in the amount
- 12 of recycling. Now that 80 percent gets us to a whopping
- 13 20 percent recycling rate today.
- We would like to see, as would EPA, and I'm sure
- 15 most people here, would like to see the overall recycling
- 16 therefore compliance rate getup to 60 to 80 percent of all
- 17 the lamps. That may not be doable, because there may
- 18 always be exemptions.
- 19 What this means in California is that there's
- 20 about 35 or 40 million lamps per year that need to be
- 21 recycled about that are not being recycled. Now, that's
- 22 35 or 40 million lamps that are breaking in the garbage.
- 23 I'm not suggesting that means it's a problem for the
- 24 landfills, but they're breaking in the garbage, so it is a
- 25 problem for TMDL and worker exposure.

1 DIRECTOR LOWRY: Mr. Abernathy, if I could ask

- 2 you a question here. What do you do in the recycling
- 3 industry when you break a lamp? I assume at some point
- 4 the glass is broken, but with respect to air emissions and
- 5 transpiration.
- 6 MR. ABERNATHY: Are you talking about a
- 7 controlled system or in an uncontrolled breakage?
- 8 DIRECTOR LOWRY: No I'm talking about in the
- 9 recycling environment of the folks that you represent what
- 10 do the recyclers do?
- 11 MR. ABERNATHY: In this country almost all of the
- 12 recyclers use a dry process whereby the lamps are put into
- 13 a box, a machine. They're broken in there and a
- 14 significant amount of room air is pulled into that machine
- 15 at the same time the components are being jostled around
- 16 and separated.
- 17 It is the air that flows across the broken
- 18 components at a high velocity that strips a way the
- 19 phosphorous coating which Mr. Bleasby talked about and
- 20 most of the mercury.
- 21 And it happens very quickly. The faster the
- 22 better for better separation. And the airstream which now
- 23 does contain mercury and other things must be filtered in
- 24 system and also through some treated carbon so that when
- 25 that air comes out it's free from mercury.

```
1 DIRECTOR LOWRY: Right.
```

- MR. ABERNATHY: Does that answer your question?
- 3 DIRECTOR LOWRY: It does, thank you.
- 4 MR. ABERNATHY: I think we're ready for the next
- 5 slide.
- --000--
- 7 MR. ABERNATHY: My theory, at least, supported by
- 8 the recycling industry is that we have a lower recycling
- 9 rate here currently than in other states because we've had
- 10 for at least 12 years a policy which encouraged people to
- 11 throw lamps into the municipal solid waste. I'm talking
- 12 about the 25 lamp per gate policy. I'm talking about the
- 13 multiple interpretations of that policy in which people
- 14 were confused about what to do with lamps, when they had
- 15 to be manifested, when they didn't, when they needed
- 16 permits, when they didn't, when The HID lamps became
- 17 relevant in the context of being different than standard
- 18 fluorescent lamps.
- 19 I have worked with this agency for many, many
- 20 years and there have been several attempts at some decent
- 21 regulatory change, which we felt would have improved the
- 22 overall situation. But here we are, in this month where
- 23 we really don't have anything much more significant than
- 24 the federal universal waste rule, which was adopted by
- 25 emergency.

- 1 Next please.
- 2 --000--
- 3 MR. ABERNATHY: Mr. Bleasby talked about some
- 4 other states with more stringent policies and I won't
- 5 repeat all of that. Just know that there are several
- 6 states with more stringent policies and some states doing
- 7 a better job of recycling than we are here.
- 8 One comment I'll make about Florida since Mr.
- 9 Bleasby mentioned it, is that Florida doesn't exempt more
- 10 than ten lamps per month, which means they don't really
- 11 acknowledge CESQGs.
- 12 They have another interesting standard in
- 13 Florida, it's a mercury removal standard. It talks about
- 14 treatment. It says if you're going to treat and recycle
- 15 things with mercury in Florida, you must recover all but
- 16 one part per million of the amount of mercury you started
- 17 with.
- 18 That's a treatment standard. It's a performance
- 19 standard and it's a way that Florida ensures there is no
- 20 sham recycling going on. It's a standard we happen to
- 21 support.
- Next slide, please.
- --000--
- 24 MR. ABERNATHY: I guess in summation, I'll say
- 25 that what we do, what I personally do and what our

1 organization does is all about outreach. It's all about

- 2 providing information for people to tell them that number
- 3 one, there is mercury in lamps, number two, there is
- 4 something you can do with it besides throw it away.
- 5 A couple of other people who talked this morning
- 6 said that the biggest problem we have is that people
- 7 simply don't know that there is mercury in some of these
- 8 products. And I know that most building janitors in the
- 9 states of California don't know that what they're throwing
- 10 in the garbage has mercury in it.
- 11 So let's tell them. Let's tell them and let's
- 12 trust that they'll do the right thing, and I think we'll
- 13 see some increased recycling.
- 14 --000--
- 15 DIRECTOR LOWRY: For those of you who can read
- 16 this slide, pleases raise your hand?
- 17 (Laughter.)
- 18 MR. ABERNATHY: I'll summarize this slide.
- 19 That's a terrible color, isn't it.
- 20 (Laughter.)
- 21 MR. ABERNATHY: Increased Regulation for lamps
- 22 means two things. It means that more lamps are regulated
- 23 and more lamps shouldn't be put in the garbage. But it
- 24 also means less regulation for those people who chose to
- 25 do the right thing with lamps. And this slide is about

1 business opportunities for people who chose to do the

- 2 right thing.
- 3 What this means is that there are business
- 4 opportunities to make money by energy service companies,
- 5 contractors, demolition people, maintenance people,
- 6 janitor people, the solid waste industry and virtually
- 7 anybody who wants to be involved in diverting lamps from
- 8 the garbage. There is money to be made today in
- 9 California doing this.
- 10 --000--
- 11 MR. ABERNATHY: The last slide, I'm not even
- 12 going to talk about this slide, because it's -- I put it
- 13 up on the screen so I can talk about something not related
- 14 to it. And that is the number of lamps that could be
- 15 diverted is significant. It's about 40 to 50 percent.
- 16 The number of people involved in that diversion is not
- 17 very significant today.
- 18 What this means is that more and more people
- 19 without regulatory burden can get involved and we'll see a
- 20 doubling or tripling of the recycling rate, which brings
- 21 me to the last point which is capacity.
- 22 The recycling industry, both inside and outside
- 23 of California, has capacity for more lamps. They're only
- 24 operating on eight-hour shifts today. They can easily
- 25 operate on 24-hour shifts. They're only operating with

1 one recycling system per TSD facility. That can easily be

- 2 changed. And the amount of lamps that leave the State is
- 3 significant. More than half of all of California's lamps
- 4 that get recycled are being recycled outside of
- 5 California.
- 6 So the economics of transportation isn't a big
- 7 factor. In fact, as Mr. Bleasby said nor is the economics
- 8 of recycling in total, because it's still only one percent
- 9 of the total life cycle of the lamp. So we have capacity.
- 10 We need to see all lamps recycled.
- 11 Low mercury lamps are essentially no different.
- 12 We're going back now to looking at TMDL issues, to fish
- 13 tissue studies that we have numbers. Low mercury lamps
- 14 are significantly no different than high mercury lamps
- 15 relative to the low level of concern in our sediment and
- 16 in our fish tissue and in our human update.
- 17 Thank you.
- 18 DIRECTOR LOWRY: All right. Thank you for your
- 19 comments.
- Okay. Next we have Patricia Becker from Philips
- 21 lighting.
- Ms. Becker.
- 23 (Thereupon an overhead presentation was
- 24 presented as follows.)
- MS. BECKER: Thank you. ALTO Products, that's

1 the Philips low-mercury product. It happens to be the

- 2 only linear fluorescent product that we make. If it's
- 3 ALTO, then that's all we offer. These products meet the
- 4 California TTLC requirement of 20 parts per million. We
- 5 adhere to that worldwide.
- 6 The lamps that we make in Salina, Kansas, which
- 7 is where we make the lamps for the United States adheres
- 8 to that standard. The lamps that we make we Bangpoo,
- 9 Thailand for other parts of the world adhere to that
- 10 standard. It's part of our companywide policy.
- 11 All of the ALTO linear fluorescents in California
- 12 are designed -- actually all of the ALTO linear
- 13 fluorescents in the United States are designed to meet
- 14 California compliance. They meet TCLP, the STLC, TTLC and
- 15 the aquatic bioassay test.
- As far as our linear fluorescents are concerned,
- 17 if they don't meet California requirements, then we don't
- 18 introduce them as ALTO until we are able to meet that
- 19 California requirement.
- 20 --00o--
- 21 MS. BECKER: Ninety-five percent of the linear
- 22 fluorescents have been converted to ALTO. Additional ALTO
- 23 types are being developed all the time and introduced as
- 24 they come on line. When we introduce ALTO then we take
- 25 away the product that is considered a hazardous or has the

- 1 higher mercury content.
- 2 Philips worldwide has, what we call, a company
- 3 Eco-Vision. It is an effort worldwide to reduce the
- 4 amount of mercury in our products to reduce usage of
- 5 energy in our factories, to reduce the water use in our
- 6 factories, to reduce the amount of packaging that we use.
- 7 Philips is company worldwide that is conscious of
- 8 the environmental effort. We're making this effort
- 9 worldwide. Philips encourages our distributors to partner
- 10 with the recyclers. We're doing that in California and
- 11 later this month a letter is going out to all of our
- 12 distributors from Philips asking them, encouraging them to
- 13 develop to partner up with recyclers because it is our
- 14 corporate policy that we recommend recycling our lamps,
- 15 even though they do meet the nonhazardous classification
- 16 for California.
- 17 DIRECTOR LOWRY: Do you have, at your finger
- 18 tips, a comparison of the number of grams or whatever unit
- 19 is appropriate of mercury in an ALTO four-foot lamp as
- 20 opposed to one which doesn't meet those standards?
- 21 MS. BECKER: The ALTO four-foot lamp in a T-8
- 22 version has less than 3.5 milligrams. The other T-8
- 23 versions on the market are 10 to 12 milligrams.
- 24 DIRECTOR LOWRY: All right. And you heard the
- 25 first commenter's statement about you put in so much and

1 you use it up, so life goes on. Do you have studies, and

- 2 there's been some controversy about how long do they last,
- 3 with the amount of mercury in there? Are they publicly
- 4 available studies that are recognized in the scientific
- 5 community which talk about comparisons of length of life
- 6 of these types of lamps?
- 7 MS. BECKER: We have several studies ourself, but
- 8 we're also in the process right now of having an
- 9 independent lamp study done, by, you know, an independent
- 10 company. To this date, we have over 700 million of the
- 11 ALTO fluorescent products distributed throughout the
- 12 United States, sold throughout the United States.
- Those lamps have performed as the standard lamps
- 14 have performed given the life that we need, in a lot of
- 15 cases, even more life that what we had predicted, than
- 16 what they're rated at. They're rated at 20,000 hours.
- 17 When that study is available -- at this point, in
- 18 time we have more than 11,000 hours on the lamps with no
- 19 failures at all. According to the standards mortality
- 20 curves, we should have some failures.
- 21 DIRECTOR LOWRY: Um-hmm. Is this you turn it on
- 22 and you leave it on for 20,000 hours or you turn it on and
- 23 off or how is the study performed?
- MS. BECKER: Lamps are tested three hours, 20
- 25 minutes off. That's a standard testing pattern.

1 DIRECTOR LOWRY: And so you're sort of half way

- 2 through that study in terms of --
- 3 MS. BECKER: Yes.
- 4 DIRECTOR LOWRY: When do you expect it to be
- 5 done?
- 6 MS. BECKER: Well, based on 8,700 hours a year,
- 7 I'd say we're going to have another year.
- 8 (Laughter.)
- 9 MS. BECKER: And you can follow it as it goes
- 10 along. According to the mortality curve, we should start
- 11 to see lamps falling off now. To this date, we have not
- 12 lost any and this is done by an independent testing lab.
- 13 DIRECTOR LOWRY: Okay, go ahead.
- 14 MS. BECKER: Right now regulations in California
- 15 require the recycling of all hazardous lamps. And we've
- 16 heard the national average of recycling rate is
- 17 approximately 24 percent, 20 percent somewhere in that
- 18 neighborhood, so we know no we're in the right place based
- 19 on the total number of lamps sold and then the information
- 20 from the lamp recyclers as to what they've recycled.
- 21 Enforcement of current regulations would
- 22 significantly increase this recycling.
- 23 ---00---
- 24 MS. BECKER: Recyclers for California are located
- 25 in Hayward, in Ontario and in Phoenix. Philips has

1 encouraged recycling of its products for many years. As a

- 2 matter of fact when we talk to customers, when we talk to
- 3 distributors, we always recommend recycling as your first
- 4 option.
- 5 ---00--
- 6 MS. BECKER: Currently mercury levels from
- 7 Philips and other manufacturers demonstrate the
- 8 possibility of producing nonhazardous lamps. Other
- 9 manufacturers have incentive to lower mercury levels to
- 10 save their market share.
- 11 And source reduction should be a goal of the
- 12 regulation. We don't want to take that incentive away to
- 13 go into source reduction. If you make all lamps hazardous
- 14 with no distinction between nonhazardous and hazardous,
- 15 then you take that incentive away.
- What happens is there becomes financial pressure
- 17 on factories to cut corners and to make lamps a little
- 18 less expensively. And some of the things that could
- 19 happen or one of the things that could happen is the
- 20 amount of mercury in that lamp could increase instead of
- 21 going down, which is where we want it.
- --000--
- 23 DIRECTOR LOWRY: I didn't follow that. Can
- 24 you go over that again.
- MS. BECKER: Well, if you take away the yard

1 stick or the goal to reach, like the 20 parts per million

- 2 in California, if you take away the distinction between
- 3 hazardous and nonhazardous, and everything has to be
- 4 hazardous, then a manufacturer who is putting money and
- 5 effort into producing a lamp that meets your 20 parts per
- 6 million no longer has to put that money there. So when
- 7 the financial people say cut back on your expenses at the
- 8 factory level, one of the things that can happen is that
- 9 stops, the mercury levels could go up.
- 10 DIRECTOR LOWRY: I see what you are saying. What
- 11 if we go to five parts per million, two parts per million,
- 12 who would that be?
- 13 MS. BECKER: That's quite feasible, if you did a
- 14 step approach to that where you phase it in, because
- 15 there's continuing, there's ongoing research, you know,
- 16 it's going on. We know we can reach the 20 parts per
- 17 million. We have not only developed lamps but another
- 18 manufacturer has lamps that meets your requirement, so we
- 19 know it's achievable. And we're achieving it with the
- 20 full rated life, the full package of a light output.
- 21 DIRECTOR LOWRY: Okay, go ahead.
- 22 MS. BECKER: The mercury level in products should
- 23 be looked at from a public policy standpoint, as well as a
- 24 risk based standpoint. Some of your risk based numbers
- 25 are soft, containment assumptions, which can skew the

1 conclusion, public policy, like regulatory goals should

- 2 encourage source reduction.
- 3 --000--
- 4 MS. BECKER: And we already spoke about this, but
- 5 the distinction between nonhazardous and hazardous lamps
- 6 is important. Recycling nonhazardous lamps under the
- 7 current regulation reduces the costs of storage, training
- 8 and handling for endusers. We have one large facility, a
- 9 customer of ours that disposes of over 250,000 lamps a
- 10 year. And they just figured recycling the ALTO lamps
- 11 because of the reduced cost in storage, training and
- 12 handling saves them \$60,000 a year.
- 13 TTLC is a more stringent test. We cannot be
- 14 influenced by additives like the TCLP test can. It's a
- 15 more true test.
- 16 --000--
- MS. BECKER: The future of mercury source
- 18 reduction and increased recycling is up to DTSC and the
- 19 legislature. Like I said, before, phasing down may be a
- 20 possibility. Research is ongoing. And there's continual
- 21 change being made, more ALTO products being added.
- 22 California hazardous west regulations are the
- 23 toughest in the nation and a model for other jurisdictions
- 24 considering this question.
- Thank you.

1 DIRECTOR LOWRY: All right. Thank you for your

- 2 comments. And I shall add that those of you who have made
- 3 a presentation, if there's anything you wanted to add
- 4 either at later hearings or submitting written materials,
- 5 we'd certainly be happy to get them.
- 6 I think next is Teresa Pichay. I got it right
- 7 this time, from the California Dental Association.
- 8 MR. PICHAY: The California Dental Association
- 9 represents approximately 70 percent of the 25,000 licensed
- 10 dentists in the State.
- 11 The license dentists include retired dentists,
- 12 dental school faculty, inactive dentists, dentists who are
- 13 employees and dentists in private practice. The majority
- 14 of the CDA members are generally dentists in private
- 15 practice.
- The Association also has specialty members, such
- 17 as oral surgeons, periodontists, pediatric dentists,
- 18 public health dentists, orthodontists, endodontists,
- 19 prosthodontists, and oral radiologists. Some of these
- 20 specialists do not place or remove fillings.
- 21 The majority of private practice dentists employ
- 22 fewer than ten people. Dental professionals and the
- 23 California Dental Association are committed to the
- 24 treatment and elimination of oral disease and to the
- 25 overall improvement of public health.

```
1 Dentists treat diseases and disorders of the
```

- 2 mouth and jaw. During the past 100 years, the oral health
- 3 of the American public has improved tremendously, and
- 4 individuals learned the importance of preventative oral
- 5 hygiene, regular dental checkups as well as the role of
- 6 fluoride has in preventing tooth decay.
- 7 However, dentistry continues to face significant
- 8 challenges. Last year in conjunction with the U.S.
- 9 Surgeon General's first ever report on the oral health of
- 10 American, the California Dental Health Foundation released
- 11 a report on the oral health of the State's children. From
- 12 this report we learned that California children have twice
- 13 as much untreated decay as children in other states. Only
- 14 ten percent of eight year olds in the State get sealant
- 15 for the permanent first molars.
- One-third of the parents of pre-schoolers give
- 17 their children bottles as they go to sleep, a practice
- 18 that promotes tooth decay. And only 30 percent of the
- 19 states citizens receive the benefits of fluoridated water.
- 20 The dental profession and the State of California
- 21 are working hard to reverse these situations, but it is
- 22 difficult. The DentiCal program alone is inadequate to
- 23 address the problems, and a reimbursement level of 50
- 24 cents on the dollar for the actual cost of the care
- 25 dentists provides is a disincentive for many providers.

1 Increasing access to dental care, especially for children,

- 2 is a high priority for the Association, as well as the
- 3 State.
- 4 It is important for us to be able to provide as
- 5 much benefit as possible for the few dollars that are
- 6 allocated for access programs. This is a significant
- 7 reason for the continued use of amalgam fillings, because
- 8 this material is inexpensive compared to alternative
- 9 materials that provide needed health benefits.
- 10 Dental amalgam and resin based composites are the
- 11 materials most used for fillings. Other restorative
- 12 materials are listed on the dental materials facts sheet a
- 13 document approved last month by the Dental Board of
- 14 California.
- 15 Amalgam has been used for nearly 200 years, while
- 16 resin based composites have been a dental restorative
- 17 material for approximately 30 years. It was not until
- 18 recently, however, that resin based composites became
- 19 acceptable for use in the teeth in the posterior areas or
- 20 the back of the mouth.
- 21 In 1998 the American Dental Association convened
- 22 a meeting of dental materials experts. A consensus
- 23 statement was developed on the use of resin based
- 24 composites in posterior restoration. The statement
- 25 summarizes the state of the science and points to areas

1 where scientific research should be directed in order to

- 2 improve the current material.
- 3 This statement also discusses the conditions
- 4 underwhich resin based composites should not be used,
- 5 namely large fillings, conditions where the dentist is
- 6 unable to control moisture and patient sensitivity to the
- 7 material.
- 8 Recent dental insurance data indicates that use
- 9 of resin based composites is increasing while amalgam use
- 10 is decreasing. We suggest the reasons for this change are
- 11 that resin based composites are a better esthetic
- 12 material, and changes have been made to improve its
- 13 durability and ease in placement.
- 14 However, technical factors that limit the broader
- 15 use of resin based composites include, one, the material
- 16 cost, two, the process to place resin based composites
- 17 requires more time and technical skill, and, three,
- 18 manufacturers change product formulas frequently,
- 19 therefore it is difficult to predict how a specific resin
- 20 based composite will behave over time.
- 21 We also point out that dental schools only
- 22 recently began incorporating instruction on placement of
- 23 resin based composites into their curriculum.
- 24 Dental research has been directed to the
- 25 development of materials and methods to eliminate or

- 1 diminish the effects of oral disease and disorders.
- 2 Current research projects include the development of a
- 3 vaccine to prevent formation of cavities, and the
- 4 development of a method to grow teeth.
- 5 Current research projects also include
- 6 development of better resin based composites and
- 7 nonmercury metallic filling material.
- 8 The American Dental Association's Pffanberger
- 9 Research Center works in conjunction with scientists at
- 10 the National Institute of Dental and Craniofacial
- 11 Research, one of the National Institutes of Health and the
- 12 National Institute of Standards and Technologies, an
- 13 agency of the U.S. Department of Commerce on the research
- 14 and development of improved and new dental materials.
- The efforts of scientists in the nonprofit and
- 16 public sector are also joined by researchers who work for
- 17 companies that manufacturer dental materials. Their work
- 18 is shared at scientific meetings held around the world.
- 19 I want to emphasize to you that the practice of
- 20 dentistry is not based on anecdotes and traditions, but is
- 21 largely based on peer-reviewed science and proven methods
- 22 and treatment.
- 23 So where is dentistry today on the issue of the
- 24 continued uses of amalgam? Science has provided a new
- 25 filling material that is esthetically superior and

- 1 improvements continue to be made in the material in the
- 2 areas of durability, ease of placement and cost, yet
- 3 amalgam continues to be used by most dentists.
- 4 It is the opinion of several dental materials
- 5 experts, however, that the use of amalgam will continue
- 6 the decrease, but not as rapidly as some people predicted
- 7 when the new filling material was introduced. Science, as
- 8 well as patient considerations, will dictate the future of
- 9 amalgam.
- 10 On our comments on the draft mercury report, a
- 11 general comment is that we noticed that the Agency for
- 12 Toxic Substances and Disease Registry's 1999 toxicological
- 13 profile on mercury was not utilized. This document
- 14 contains pertinent information on the health effects of
- 15 all forms of mercury and how humans may be exposed to
- 16 mercury.
- 17 One of those areas that was not included in the
- 18 DTSC report was the cultural uses of mercury, and that is
- 19 discussed the ATSDR report. The ATSDR report does review
- 20 the current science on the toxicity of mercury and
- 21 amalgam, which is that the body of scientific research
- 22 does not link dental amalgam to any significant adverse
- 23 health effects.
- 24 A couple of specific comments on Section 4, pages
- 25 63 to 64.

```
1 DIRECTOR LOWRY: Before you get there, does the
```

- 2 ATSDR report deal with whether the amalgam is hazardous to
- 3 the person receiving the treatment?
- 4 MR. PICHAY: Yes.
- 5 DIRECTOR LOWRY: Does it deal with all the waste
- 6 issues of discarding the amalgam when you go through the
- 7 process?
- 8 MR. PICHAY: Yes.
- 9 DIRECTOR LOWRY: So it covers both subjects?
- 10 MR. PICHAY: Yes.
- 11 DIRECTOR LOWRY: All right, thanks.
- MR. PICHAY: Sections 4, pages 63 to 64. CDA
- 13 disagrees with the following statement found on page 64
- 14 second paragraph.
- 15 Quote, "Since labor appears to be a
- 16 major factor for the added cost of
- 17 composite fillings, encouraging dentists
- 18 to accept and work with composite
- 19 fillings may indirectly reduce amalgam
- waste," end quote.
- 21 This statement proposes to interfere in a
- 22 relationship in a relationship patient and health care
- 23 provider. It assumes that dentists are uninformed about
- 24 dental materials. The choice of treatment and dental
- 25 restorative material belongs only to the patient and

```
1 treating dentist. The dentist recommendation for
```

- 2 treatment is based on his or her training, experience and
- 3 knowledge.
- 4 Active licensed dentists are required to take 50
- 5 hours of continuing education every two years. Dentists
- 6 are aware of the alternatives to amalgam and of the
- 7 clinical situations that indicate that an amalgam
- 8 alternative is an appropriate treatment choice.
- 9 On Section 5, page 81, we are surprised to see
- 10 that the State-authored document attributes a quote about
- 11 California law to the web site of hypnotist. The law as
- 12 described in this quote does not exist. We are
- 13 disappointed that unsubstantiated opinions are --
- 14 DIRECTOR LOWRY: Can you reference that again. I
- 15 want to read this.
- 16 (Laughter.)
- MR. PICHAY: Section 5, page 81.
- 18 DIRECTOR LOWRY: Eighty-one?
- 19 MR. PICHAY: Um-hmm. You have to look at the
- 20 footnotes at the end of the section.
- 21 DIRECTOR LOWRY: What footnote are we looking at?
- 22 Are we going to hear from the National
- 23 Association of Hypnotists?
- 24 (Laughter.)
- 25 DIRECTOR LOWRY: So what footnote number are you

- 1 looking at.
- 2 MS. PICHAY: Let me find it for you.
- 3 DIRECTOR LOWRY: All right, great.
- 4 MR. PICHAY: Forty-six or 47.
- 5 DIRECTOR LOWRY: All right. The statement, "The
- 6 use of mercury in dental amalgams is being seriously
- 7 debated worldwide." You do not?
- 8 MR. PICHAY: No, we do not. However, there's, I
- 9 think, also a reference there that bans are being
- 10 considered and that rumor has been going around for many
- 11 years. There is no ban on amalgam in any country in the
- 12 world.
- 13 DIRECTOR LOWRY: Okay, go ahead. I interrupted
- 14 you.
- MR. PICHAY: We are disappointed that
- 16 unsubstantiated opinions are cited in this report and we
- 17 suggest that they be eliminated. We highly recommend that
- 18 the authors refrain from using opinion as fact and on the
- 19 subject of the use of amalgam, utilize more reputable
- 20 documents and statements, such as those from the U.S.
- 21 Public Health Service, the Food and Drug Administration,
- 22 the Centers for Disease Control and the Agency for Toxic
- 23 Substances and Disease Registry.
- 24 For the record, Senate Bill 134 signed by the
- 25 Governor last month requires dentists to provide the

1 dental materials fact sheet to each patient prior to the

- 2 start of any dental restoration. This includes fillings,
- 3 whether amalgam or composite, crowns, veneers, onlays and
- 4 inlays. Dentists must obtain from the patient a signed
- 5 acknowledgement of receipt of the fact sheet.
- 6 A general comment on the estimates provided on
- 7 the contribution of dental amalgam to the amount of
- 8 mercury and solid waste and wastewater. The numbers are
- 9 not definitive.
- 10 The survey results of the POTWs that actually
- 11 sampled wastewater from dental offices vary greatly. The
- 12 variability of the numbers has been attributed to several
- 13 factors, dental equipment, dental procedures performed,
- 14 the use of other mercury-containing products in the
- 15 office, the size of the dental practical and the age of
- 16 the facility.
- 17 CDA continues to be concerned that sampling
- 18 results from a handful of dental offices are extrapolated
- 19 to ascertain the total contribution of several hundred or
- 20 even several thousand dental practices. We would like
- 21 this report to include statements regarding the
- 22 variability of wastewater sampling results and the
- 23 contributing factors.
- 24 Some comments on the options to regulate mercury
- 25 containing wastes. The Association supports a regulatory

- 1 framework that encourages small businesses to implement
- 2 reasonable pollution prevention practices that result in
- 3 significant reductions in targeted waste. The State
- 4 should emphasize and encourage the recycling of
- 5 mercury-containing products.
- 6 My comments start with the waste types listed on
- 7 Table 6-1 on page 92, and the options for hazardous waste
- 8 identification and management. The listing of Dental
- 9 Amalgam Scrap we understand includes scrap left over from
- 10 the placement of fillings, scraps from the removal of
- 11 fillings and scraps caught in standard traps and filters.
- 12 These are identified as hazardous but are exempt from
- 13 hazardous waste management regulations if they are managed
- 14 as scrap metal for recycling. The options discussed in
- 15 this section would not change the identification and
- 16 management of this waste.
- 17 The next dental waste listed on the table is
- 18 Fines. These are described as quote, "typically not
- 19 caught by special traps and are being discharged to the
- 20 POTWs," end quote. And recently it was clarified that it
- 21 is to be regulated as hazardous waste.
- 22 This description is unclear to us. If this
- 23 description is what the Department intends, the
- 24 implication for approximately 20,000 dental facilities is
- 25 that they can no longer discharge wastewater to the

- 1 sanitary sewer and would have to haul the water to a
- 2 treatment facility. The cost to these small businesses
- 3 would be enormous and it would have a negative impact on
- 4 the provision of oral health care.
- 5 The benefit/cost ratio of this characterization
- 6 and required management is very low in our opinion, and
- 7 has not been sufficiently researched by the Department.
- 8 The Western Lake Superior Sanitary District, for example,
- 9 has estimated a cost of recovering dental amalgam fines to
- 10 be as high as \$682,000 for each pound of mercury
- 11 recovered, and that the amount of mercury recovered from
- 12 all dental offices in Minnesota would total a little over
- 13 five pounds.
- 14 Is it possible that the Dental Amalgam Fines
- 15 listed here are intended to be the fines that pass through
- 16 the standard dental traps and filters and are captured by
- 17 special amalgam removal technology?
- 18 There are systems currently on the market that
- 19 capture fines and even soluble mercury. However, 100
- 20 percent mercury removal has not been achieved by any
- 21 device. The media that captures and holds these fines,
- 22 CDA agrees should be characterized as hazardous waste. We
- 23 would recommend this waste be managed as a universal
- 24 waste, because, one, the waste source is a single easily
- 25 identifiable industry and, two, device manufacturers have

1 made arrangements for recycling this waste that's making

- 2 west management considerations simpler for the dental
- 3 office.
- 4 DIRECTOR LOWRY: What's the level of efficiency
- 5 you get with those traps?
- 6 MR. PICHAY: The manufacturers claim as high as
- 7 99 percent, but actually, which I talk about in the next
- 8 paragraph, actual use is much lower, but over 90 percent.
- 9 DIRECTOR LOWRY: Right.
- 10 MR. PICHAY: A U.S. EPA verification protocol is
- 11 being developed for these special technologies and it can
- 12 be assumed that more effective technologies can be
- 13 developed. However, can the typical dental office afford
- 14 the technology?
- 15 I will, again, refer you to the article written
- 16 by the Western Lake Superior Sanitation District that I'm
- 17 submitting with my comments.
- 18 I thank you for this opportunity to provide you
- 19 with information on dentistry and dental materials and
- 20 would like to leave you with a few comments about
- 21 dentistry and pollution prevention.
- Ten years ago the issue of amalgam's impact on
- 23 the environment entered the dental radar screen. Across
- 24 the country, dentistry used legislative and legal action
- 25 to prevent what appeared to be regulation without

- 1 scientific basis. Dentists are obvious targets because
- 2 they have been bombard with negative publicity over the
- 3 continued use of mercury.
- 4 During these ten years, dentistry has also worked
- 5 with pollution prevention specialists toward improving the
- 6 knowledge base on the dental contribution to wastewater
- 7 and on methods to significantly reduce pollutants of
- 8 concern.
- 9 The CDA has participated in productive meetings
- 10 with the Mercury Council of the San Francisco Regional
- 11 Water Quality Board and the Bay Area Pollution Prevention
- 12 Group. Dentistry is learning the needs of pollution
- 13 prevention specialists, while at the same time the
- 14 specialists are learning why dentists do what they do.
- We believe the ultimate pollution prevention
- 16 strategy for dentistry includes the following: all
- 17 individuals should brush and floss after every meal.
- 18 DIRECTOR LOWRY: I knew flossing would come into
- 19 this?
- 20 (Laughter.)
- 21 MR. PICHAY: Visit their dentists regularly, and
- 22 have access to community water fluoridation. The overall
- 23 goal of dentistry and pollution prevention is essentially
- 24 the same, improving the public's health.
- Thank you.

```
1 DIRECTOR LOWRY: Thank you for your comments.
```

- 2 Okay, next on my list is Mark Madden, the Scrap
- 3 Recycling Industry, is that right?
- 4 MR. MADDEN: Yes. I'm Mark Madden and I'd just
- 5 like to take a moment to floss before I do this.
- 6 (Laughter.)
- 7 MR. MADDEN: Mark Madden representing the
- 8 California Institute of Scrap Recycling Industries. This
- 9 is a group of roughly 100 or more companies, metal
- 10 recyclers throughout California, some very small
- 11 companies, some very large companies, even some very
- 12 medium companies, who recycle and process hundreds of
- 13 thousands of tons of metal each year, representing
- 14 thousands of jobs and millions and millions of dollars of
- 15 sales of raw materials for steel mills and smelters
- 16 throughout literally the world. It constitutes one of
- 17 California's largest exports.
- I wanted to begin by saying one fundamental
- 19 thing, which is that what the commonality among all these
- 20 small, medium and large companies is that none of them use
- 21 or generate mercury.
- 22 As you may know, current law, with respect to
- 23 hazardous materials and appliances and motor vehicles or
- 24 autobodies says the following and I'm reading from what
- 25 was AB 847, a bill which a number of people in this room

1 thankfully cooperated and participated in its enactment as

- 2 well as its predecessor AB 1760, the original metal
- 3 discard act.
- 4 But it says the following, "Materials that
- 5 require special handling shall be removed from major
- 6 appliances in vehicles in which they are contained prior
- 7 to crushing or transport or transferring to a bailer or
- 8 shredder for recycling,"
- 9 And 42167 specifically enumerates which materials
- 10 they are. They are, Sodium Azide canisters, encapsulated
- 11 PCBs, chlorofluorcarbons, CFCs, used oil and please note
- 12 mercury found in switches and temperature control devices
- 13 in major appliances.
- 14 Let me move ahead for just a minute before I go
- 15 back and talk about how we implement this law, by saying
- 16 that SB 633, which was enacted in this pass session and to
- 17 be in effect on January 1st, speaks about mercury switches
- 18 in automobiles.
- 19 However, that legislation simply asked for the
- 20 voluntary removal of such in cooperation of the
- 21 dismantlers who are principally involved removing all
- 22 these other materials, because they are, in fact, the
- 23 source of our material. That is, junk in abandon cars
- 24 typically go to auto dismantlers who part them out. And
- 25 then before, as a prior condition of them sending to us,

- 1 must remove all these materials previously enumerated.
- The only exception appears to be mercury switches
- 3 in cars and we have to ask the simple question how come?
- 4 We have another question and it goes something like this,
- 5 the same legislation, 633, speaks about the prohibition of
- 6 mercury switches in car trunks and hoods by, I think,
- 7 2005. But there are other sources of mercury in vehicles,
- 8 how come the bill is silent about that?
- 9 DIRECTOR LOWRY: Are any Legislators in the
- 10 audience?
- 11 (Laughter.)
- MR. MADDEN: I'll take any answer.
- 13 DIRECTOR LOWRY: Any lobbyists who want to
- 14 volunteer for some of that?
- Go ahead. Sorry to interrupt.
- MR. MADDEN: And finally, let me describe for
- 17 those who are not familiar, and I think Ms. Yep and Mr.
- 18 Gin are actually very familiar, with how cars are
- 19 shredded. Cars come to us typically speaking flat, that
- 20 is that they are flattened for the purposes of
- 21 transportation.
- I make that point because to attempt to remove
- 23 anything from a flattened car literally requires the jaws
- 24 of life on each of the hundreds of thousands of vehicles
- 25 that we receive during the course of a day. We couldn't

- 1 possibly do this.
- Moreover, we are not hazardous waste generators.
- 3 We do not have the ability or capacity to do that, and the
- 4 spirit, the very spirit of AB 847 and 1768, its
- 5 predecessor, were, in fact, to draw a very clear line
- 6 between people who are, in fact, equipped to remove these
- 7 materials, that is the dismantlers and car shredders who
- 8 receive the material free of hazardous materials in order
- 9 to do what they do.
- 10 Now what do they do? They take these flattened
- 11 cars and put them in what constitutes a giant meat
- 12 grinder. One with something like a 6,000 horsepower
- 13 engine and literally fractures the car through this grate.
- 14 And there's a small correction, the interior temperature
- 15 of that car shredder does not come anywhere close to the
- 16 temperatures that people were alluding to in the previous
- 17 discussion this morning.
- 18 What happens after that is that the metals are
- 19 separated out, both the ferrous and nonferrous and what's
- 20 left, the famous auto shredder residue, has separated
- 21 itself and created further the requirements of this very
- 22 agency, with polysilicon to treat the trace elements of
- 23 cadmium, chromium, copper, lead, mercury, nickel and zinc.
- 24 And then ultimately after it's tested and approved, it
- 25 goes to landfills.

- 1 So I guess in response to the question, the
- 2 omnibus question that asked before about standards, we are
- 3 confident that the current standards properly protect
- 4 public. I want to introduce our consulting toxicologist
- 5 Dr. Brent Finley who has a few things to say about that.
- 6 DR. FINLEY: Yeah, I'd like to say one brief
- 7 comment. In the draft DTSC report there will be options
- 8 for classification of mercury-containing wastes that
- 9 involves revisiting the regulatory threshold numbers the
- 10 DTLCs and the STLCs.
- 11 And that the basis of those values are described
- 12 briefly. I would suggest that if, in fact, this is going
- 13 to be seriously considered as an option that some
- 14 discussion has to be given as to whether or not these
- 15 values are considered to be health protective today. And
- 16 if they're not, what is the evidence for believing that
- 17 they need to be revisited.
- 18 Because I could make the argument that they are,
- 19 in fact, protective of the environment. And at least some
- 20 of the evidence we've seen today suggests that we don't
- 21 have a big leaching problem with mercury in landfills. So
- 22 in subsequent versions of this report, I would hope to see
- 23 that kind of discussion.
- 24 DIRECTOR LOWRY: All right.
- MR. MADDEN: Just continue for one more minute to

- 1 simply say this, that we're very vigilant in trying to
- 2 protect the environment. We are the recyclers and proud
- 3 of it. We are very vigilant in trying to keep hazardous
- 4 materials out of our facilities. As a matter of fact, we
- 5 don't accept fluorescent lights, mercury vapor lights,
- 6 associated fixtures or ballasts, but we can inspect for
- 7 that, because when they come into the yard, we can
- 8 actually look in the truck and take a look and see.
- 9 And if we see one, they take a U-turn. They do
- 10 not enter our facility. If it's radioactive, they take a
- 11 U-turn and do not enter our facility.
- 12 Here's the problem, when we're dealing with
- 13 vehicles which are flattened, we can't see it. It's not
- 14 possible for us to see the actual mercury switches or any
- 15 other source of mercury that may be in a vehicle. But we
- 16 do know this with respect to appliances, we only deal with
- 17 people who certify that they have removed these materials
- 18 before they come to us, just like they do for CFCs and
- 19 PCBs.
- 20 We have a legal right to rely on them sending
- 21 materials free of hazardous materials. Under Senate Bill
- 22 633, we have no reason to rely on it, because it's purely
- 23 voluntary. And we have to simply ask the same question
- 24 again, how come?
- 25 DIRECTOR LOWRY: Are you precluded from entering

1 into a contract with the folks who supply you that stuff?

- 2 MR. MADDEN: We are not precluded from it, but a
- 3 contract is a private matter. And, as you know, you
- 4 cannot contract to do something illegal. What I mean to
- 5 say is this, we have no -- we have only civil resource
- 6 against those people. With respect to say, for example,
- 7 PCBs Or CFCs, if somebody was sending us this material and
- 8 representing that they had removed it, the first person
- 9 we'd talk to is you. We'd ask for an enforcement.
- 10 We might have a civil remedy, but at least we
- 11 have legal remedy as well under the scenario that you're
- 12 envisioning. If it's purely voluntary under the law, we
- 13 only have a civil recourse.
- 14 DIRECTOR LOWRY: All right. So if you were to
- 15 have a clause in the contract where you're a supplier of a
- 16 crushed automobile stated and I certify under penalty of
- 17 perjury that I've taken out all mercury switches and so
- 18 forth, you get one that has mercury switches?
- 19 MR. MADDEN: If we could see them. That's, I
- 20 guess, is the practical matter.
- 21 DIRECTOR LOWRY: That's a secondary problem.
- MR. MADDEN: Well --
- 23 DIRECTOR LOWRY: The second problem of this
- 24 scenario.
- MR. MADDEN: Well, what's our recourse?

1 DIRECTOR LOWRY: You're liquidated damages in

- 2 your contract, I don't know.
- 3 MR. MADDEN: I understand that, but there's no
- 4 legal recourse. We can't ask them to stop. We can't tell
- 5 them they're defeating the law. We can't say that they
- 6 are, you know, violating the law. We can't complain to
- 7 you. We want to complain to you. We want you to enforce
- 8 that action.
- 9 DIRECTOR LOWRY: Yeah. It's your opinion we
- 10 don't have any enforcement authority over that particular
- 11 issue.
- MR. MADDEN: It seems that way, and I would be
- 13 more than happy to be stood corrected, but if it's a
- 14 voluntary matter, it does not look like you have the
- 15 rubric of legality there.
- 16 DIRECTOR LOWRY: Right. I think the Legislature
- 17 is obligated me to encourage that.
- 18 (Laughter.)
- 19 MR. MADDEN: I think they have, yes. Somehow,
- 20 encourage is a little different word than enforce.
- 21 DIRECTOR LOWRY: Right. Anything else you want
- 22 to add, sir?
- MR. MADDEN: No, I appreciate the opportunity.
- 24 DIRECTOR LOWRY: Thank you for coming.
- 25 And our last industry spokesman is Mr. Eric

1 Almberg from Saftey-Kleen Buttonwillow if I'm not

- 2 mistaken.
- 3 MR. ALMBERG: That's correct.
- 4 (Thereupon an overhead presentation was
- 5 presented as follows.)
- 6 MR. ALMBERG: Thank you for the opportunity to
- 7 provide comments on the subject today. As has already
- 8 been said several times, I believe, I think the
- 9 Department's done a really -- an excellent job in pulling
- 10 this data together. And it's a very thorough job and
- 11 there's a lot of good information in the document. And I
- 12 think everybody here appreciates the opportunity to be
- 13 able to comment on that at the start of this process.
- Next slide.
- 15 --000--
- MR. ALMBERG: The first thing I'll say is I think
- 17 the commercial waste management industry supports pretty
- 18 much what's the standard hierarchy of best practices for
- 19 waste management. And, of course, that starts out with
- 20 source reduction and recycling, and then you end up at
- 21 treatment and disposal.
- The facility I happen to work at is primarily
- 23 involved in treatment and disposal of hazardous waste, but
- 24 Safety-Kleen itself is, through the service centers and
- 25 the household hazardous waste activities is involved in

- 1 certainly the recycling end of things.
- I certainly would recommend that DTSC increase or
- 3 continue the strong efforts towards the source reduction.
- 4 Obviously, that makes sense all the way across the Board,
- 5 if you can keep it from getting into the waste streams and
- 6 whether it's a municipal solid waste facility or a
- 7 facility like ours or somewhere else in an uncontrolled
- 8 situation.
- 9 If it doesn't -- if it's not fair to begin with,
- 10 then I think we're all better off. So I think that's
- 11 definitely -- you're moving in that direction and that's
- 12 to be commended.
- Next slide.
- 14 --000--
- MR. ALMBERG: As far as the Class 1 landfill,
- 16 which, again, that's one of the things, of course, that
- 17 we're most familiar with relative to my place of
- 18 employment, it certainly gives us, as is pointed out in
- 19 the report, when you end up at the point of disposal,
- 20 which of course is, at that point, something is not
- 21 feasibly recyclable or economically recyclable when you're
- 22 talking treatment and disposal, the Class 1 landfill
- 23 option gives you the superior protective liners which is
- 24 in the design and permit releases.
- I heard a little bit about the lack of methane

- 1 production, which is coupled with the limited vapor
- 2 transmission, should reduce the opportunities for methyl
- 3 mercury to form as well as for the release of such a
- 4 compound.
- 5 There's, of course, enhanced monitoring at your
- 6 Class 1 facilities would be that groundwater and air
- 7 monitoring. And, of course, it's already been referenced
- 8 about leachate control and removal systems, which serve to
- 9 further control the Migration of leachate which may or may
- 10 not contain mercury.
- 11 And then, of course, the Class 1 landfills have
- 12 very stringent cap design and enclosure process. And all
- 13 those things go to give that probably the most protective
- 14 disposal option that's available. There certainly is, as
- 15 I'm sure the Department's well aware of, a large amount of
- 16 Class 1 disposal capacity in California and the western
- 17 United States. That having been said -- next slide.
- 18 --000--
- 19 MR. ALMBERG: -- I'm going to skip around a
- 20 little bit here just to try to confuse everybody. I'm
- 21 going to go to the second bullet first. I would not be in
- 22 favor of using the broad based approach of simply anything
- 23 with mercury becomes hazardous.
- I think that from a generator's perspective, I
- 25 can say a couple problems that we can get into. One would

1 be that the detection limit -- well let me backup just a

- 2 minute. One of the pros to that approach was that testing
- 3 wouldn't be required. And I think there's certainly a
- 4 number of waste streams, especially the consumer products,
- 5 that people will know if mercury is in their product and
- 6 so that there won't require testing. You'll know it's
- 7 there. If there's a switch there, it's there, they've got
- 8 to deal with it.
- 9 Those, of course, are not the bulk of the
- 10 generators that I see at the Buttonwillow facility. The
- 11 ones that we work with testing a pretty much -- in many
- 12 cases, be required. Because if we're talking just
- 13 characterizing our waste or we're talking, you know,
- 14 trying to get down to establish if there's any mercury in
- 15 there at all, they're going to be doing the analysis to
- 16 key what their situation is on their waste stream. And
- 17 they may have already done it in an existing waste stream,
- 18 brand new waste stream, they'll be doing the testing.
- 19 And the thing I worry about there is that sort of
- 20 throws it back into the lab and detection limits. And if
- 21 we're -- I think there's already been some comments about
- 22 the one molecule of mercury issue, and, you know, worry
- 23 about getting into a lab where if we can detect down to 50
- 24 parts per billion on a solid, this lab can do it there,
- 25 and some other lab can -- their standard detection limits

- 1 may be higher or lower, you kind of get a different
- 2 playing field that's determining whether something is
- 3 going to be considered hazardous or not if we do the
- 4 broad-based approach and just anything with mercury in it,
- 5 flat out, is hazardous. So I have some real concerns
- 6 about that.
- 7 Then that being said, let's go to the number
- 8 three bullet. There is, though. There definitely is when
- 9 you talk about consumer products with mercury. I think
- 10 those are the things that should be prioritized as far as
- 11 source reduction or recycling.
- 12 So I guess I'm willing to say certain things
- 13 ought to be even painted with more of a broad-brush
- 14 approach to ensure that they're in the system and they
- 15 aren't ending up in landfills, they are being recycled or
- 16 they are being phased out entirely with alternatives being
- 17 used in place of mercury.
- 18 That can be don't, you know, with the expanded
- 19 universal waste rule too as appropriate. So I guess I'm
- 20 kind of saying that to me it seems like it makes sense to
- 21 look at the paint brush for some of the things like the
- 22 consumer based products, but probably not everything.
- Where does that leave the other things?
- I guess my first bullet, if as the report lays
- 25 out, you know, mercury is a serious issue, and I believe

1 that it is. I would suggest that we consider going back

- 2 and looking at what's appropriate relative to the
- 3 hazardous waste characterization. You know, the PTOCs,
- 4 the STOCs. I know it's been some time since Mr. Cam -- I
- 5 mean Bart Simmons was involved in coming up with that
- 6 process.
- 7 (Laughter.)
- 8 MR. ALMBERG: And, you know, maybe it's a good
- 9 time to relook at that and see relative to mercury, should
- 10 there be some different levels of set DTOCs and STOCs.
- 11 You know, what would be -- you know, what's the current
- 12 risk assessment data say, what's the current science say.
- 13 You know more than likely obviously you'd set lower levels
- 14 that's going to, you know, catch more of the mercury into
- 15 the system. You know, perhaps not all of it, but you --
- 16 again there's, to some extent, may be a bit of a trade off
- 17 there.
- 18 And something else that we kind Of kicked and I'm
- 19 just going to throw this out. You know, it may or may not
- 20 be something that would be beneficial, but with that's the
- 21 last bullet there on an interim approach, which if those
- 22 of us are familiar with the lead 350 PPM rule where, you
- 23 know, basically if you generate a waste stream, just for
- 24 everybody else's benefit, I know you all up there know
- 25 about that, if you generate a waste stream that has a TTLC

1 of over 350 parts per million lead, it can still pass the

- 2 STLC and be actually nonhazardous waste based on the STLC/
- 3 TTLC criteria because the TTLC for lead is 1,000.
- 4 However, it has to be disposed of in a Class 1
- 5 facility. And I'm understanding the approach on that was
- 6 based on the issues associated with lead and increased
- 7 toxicity issues that have come to light over the years.
- 8 There might be some kind of an approach there
- 9 that can be done relative to the mercury. It might ne an
- 10 option to consider. It has the benefit of putting
- 11 material into a higher management scenario based on what
- 12 other levels are appropriate, but it does not add the
- 13 layer of regulation as a hazardous waste that hazardous
- 14 waste does, you know, generator fees manifesting, record
- 15 keeping. And also it doesn't generate the taxes that, you
- 16 know, generators would have to pay if they shipped
- 17 something to a class 1 disposal facility as a hazardous
- 18 waste.
- 19 So that's just -- I wanted to throw that out.
- 20 That's, you know, something that might have merit
- 21 somewhere when in this process.
- 22 DIRECTOR LOWRY: Can we go to your third bullet
- 23 for a minute, which says consider volume and concentration
- 24 as well. What do you mean by that?
- MR. ALMBERG: Well, what I was really after there

1 was something that's kind of been alluded to was probably

- 2 the most bang for the buck, and, you know, one area that
- 3 comes into my mind is any place you've got pure mercury,
- 4 your switches in automobiles is a perfect example, where
- 5 you've got you over the entire car, maybe it is indeed a
- 6 nonhazardous level, but you do have the pure mercury there
- 7 basically what you're talking about, pure elemental
- 8 mercury, and which would seem to have, you know, a
- 9 significant risk associated with, you know, being
- 10 mismanaged. So that would be one standpoint.
- 11 Another standpoint would be if there is such a
- 12 thing that you can get your hands around, you know, where
- 13 is the volume of mercury, and I'm thinking more along the
- 14 bulk waste that's generated, not so much again the mercury
- 15 switches, but where is the bulk of the mercury if there is
- 16 such a description that can be applied. You know, maybe
- 17 that would be the type of thing to go after first and that
- 18 could possibly be done with different STLCs, TTLCs.
- 19 Again, if it warranted scientifically to capture some of
- 20 those waste streams.
- 21 DIRECTOR LOWRY: All right.
- --000--
- 23 MR. ALMBERG: On other issues the generator
- 24 education is a must. I shared this story with Bart after
- 25 the lunch break this morning. I had a conversation with a

- 1 generator Monday, this week Monday, where, you know, he
- 2 was explaining how because his particular waste stream was
- 3 not hazardous by virtue of TTLC and therefore no further
- 4 testing was necessary.
- 5 And, you know, of course this particular analysis
- 6 was such that it could have failed the STLC based on the
- 7 TTLC concentration, and so we kind of went around and
- 8 around on that and we ended up getting his laboratory on
- 9 the line, and they basically confirmed what I was telling
- 10 him that you needed to go another step on that to fully
- 11 characterize your waste stream.
- 12 And this is, you know, of course a long time
- 13 after -- you know, STLCs and TTLCs have been around for a
- 14 long time, and here I just had the conversation Monday
- 15 with the generator.
- The Lead 350 Rule, you know, whenever that comes
- 17 up, generally for the most part, you know, in our waste
- 18 acceptance process when we raise that issue to a customer,
- 19 you know, that's something that other than the big
- 20 customers that have their own environmental staffs, that's
- 21 always sort of a new thing. And I guess where I'm heading
- 22 with that, I know that AB 1332, which was offered by
- 23 Assemblyman Lowenthal, requires, you know, the Department
- 24 to do education on basically how to characterize your
- 25 waste.

1 And, you know, I'm not really sure, you know,

- 2 where we are in that whole process, but I just would
- 3 encourage that whatever comes -- what the final rules look
- 4 like and wherever we end up that if there are significant
- 5 changes, which I suspect that there will be, that it would
- 6 be really beneficial for the Department to help in any way
- 7 it can relative to educating the generators. And, you
- 8 know, I mean we'll certainly do our part through when they
- 9 approach us about wanting to manage their waste stream and
- 10 we have to hit them upside of the head and get, you know,
- 11 on the same track there.
- 12 I mean that literally, of course. But it would
- 13 and it is something that it's amazing sometimes the things
- 14 that come up that people or generators -- again I'm not
- 15 talking about your big major generators, but ones that
- 16 typically the mid-size and smaller ones that are behind on
- 17 things.
- 18 I guess the variances, my only comment on that
- 19 was, I guess, whatever is going to come out this process
- 20 of course, we need to be thinking about what kind of
- 21 variances would be issued. I mean, I know, you know right
- 22 now primarily it seems like a lot of the variances that
- 23 get issued on managing waste maybe in a different way than
- 24 it was characterized is between the State agencies. And
- 25 we just want to encourage DTSC to be very consistent in

1 that regard and to think about it. You know, I mean the

- 2 regulations get -- can certainly get tighter as far as
- 3 mercury goes. I'm sure there will be, you know, requests
- 4 for variances.
- 5 In fact, we already sort of were talking about
- 6 one associated with CalTrans and lead mercury waste today.
- 7 So I'm sure that would be something that will come up.
- 8 That's pretty much what I've got to say today.
- 9 DIRECTOR LOWRY: All right. Thank you very much
- 10 for your comments.
- 11 Is there anyone on this particular panel who
- 12 would like to add anything based on comments from me or
- 13 other panelists?
- Go ahead.
- DR. FINLEY: This will take sixty seconds just to
- 16 follow up on the previous speaker. On the issue of
- 17 prioritizing the waste stream. I agree that that is an
- 18 option that should be laid out in subsequent drafts in
- 19 this report. I don't really see that as an option as the
- 20 report sits now. It seems likes it's sort of an all or
- 21 nothing.
- 22 DIRECTOR LOWRY: I don't think it was mentioned
- 23 in that manner.
- 24 DR. FINLEY: I mean several of the speakers have
- 25 hit on the fact that it would probably be impractical to

- 1 try to regulate all mercury containing waste streams in
- 2 some sort of prioritization scheme which include volume
- 3 and concentration I think makes sense, but also the
- 4 characteristics of the stream, whether or not this
- 5 evidence is causing environmental impacts in waste dealt
- 6 with now, whether it would be risk reduction if it was
- 7 classified as a hazardous waste and sent to a Class 1
- 8 landfill, et cetera.
- 9 I think the shredded autos is a good example of
- 10 how you might work through one of those in a case study.
- 11 I mean it's fairly low volume. It routinely passes the
- 12 STLC, TTLC test. It's sent to landfills. And like I said
- 13 earlier, it's not like they have a big mercury landfill
- 14 problem. But, again, I think this prioritization scheme
- 15 is something that is probably where we would end up going.
- 16 DIRECTOR LOWRY: All right.
- 17 Anyone else?
- 18 We've had some very valuable comments. I want to
- 19 thank all of you for coming, and I encourage you to stick
- 20 around for the next part of this program, which will be a
- 21 brief break and then we'll have comments from the floor
- 22 including prepared comments from Jane Williams
- 23 representing an environmental organization. So it is now
- 24 3:00 o'clock, let's get back here 3:15.
- 25 (Thereupon a brief recess was taken.)

1 DIRECTOR LOWRY: All right if we can persuade

- 2 everyone to take a seat, please.
- 3 All right thank you for coming back. We were in
- 4 this hi-tech room attempting to locate an overhead
- 5 projector. We don't have one, nor does building
- 6 management, nor do any of the boards or departments that
- 7 we contacted seem to have one.
- 8 The general world is you -- one would then say at
- 9 this point, we'll have to resort to more primitive means,
- 10 which I guess we will, although it's because we have such
- 11 hi-tech stuff here that we don't have one. I also
- 12 noticed -- I guess you're taking all this down aren't you?
- 13 (Laughter.)
- 14 DIRECTOR LOWERY: This is like a casino, there
- 15 are no clocks on the walls, and I don't know why that is
- 16 either.
- 17 But we are honored to have with us Jane Williams
- 18 of the California Communities Against Toxics who's
- 19 successfully navigated the California airports and is here
- 20 representing that organization with America comments on
- 21 the report.
- 22 After she is finished we have five or six people
- 23 who have Indicated a wish to speak in the public comments
- 24 section of this workshop.
- 25 So welcome, Jane, and the floor is yours

1 MS. WILLIAMS: Thank you. I come to you today

- 2 actually wearing two hats as the Executive Director of
- 3 California Communities Against Toxics and as a Board
- 4 Member of the Mercury Policy Project, which is a group I
- 5 helped start that works on national mercury policy issues.
- 6 And now actually works internationally as well. There is
- 7 sort of a void about four years ago people were focusing
- 8 on different parts of the mercury problem, but weren't
- 9 really looking at overall policy issues.
- 10 So I know my colleagues before me hopefully did a
- 11 fairly good job of summarizing some of the most recent
- 12 information on mercury and toxicity and the problems with
- 13 human health impacts.
- 14 But I think one of the -- some of the key points
- 15 that we all need to keep in mind when we're talking about
- 16 regulating mercury bearing wastes, is that mercury is now
- 17 a persuasive human health problem. Because of widespread
- 18 environmental contamination, we have contamination and
- 19 real body burden problem in humans.
- 20 Mercury is a potent neurotoxin and it has
- 21 alarming impacts on the unborn fetus and after birth in
- 22 breast milk contamination as well.
- 23 Mercury, as you know, is a naturally occurring
- 24 element. It is naturally emitted. Estimates of natural
- 25 mercury emissions from degassing and volcanic eruptions

1 range from 2,700 to 6,000 metric tons of mercury per year.

- 2 The amount of mercury released to the atmosphere due to
- 3 human activities has been estimated at 3,000 metric tons
- 4 per year.
- 5 What we're talking about today is regulating some
- 6 of those anthropogenic mercury emissions. And what I
- 7 wanted to do was briefly go over the federal regulations
- 8 on mercury, which I had these nice slides from the
- 9 workgroup meeting presentation in June of '98 which are
- 10 from EPA.
- 11 But to summarize, the mercury -- there's a land
- 12 disposal restriction on mercury. And mercury, once it
- 13 goes into the hazardous waste regulatory system gets
- 14 classified as either above 260 or below 260 parts per
- 15 million. If it's above 260 parts per million which a
- 16 quite a bit of the waste that we're going to be talking
- 17 about regulating is, most of that waste ends up being
- 18 incinerated.
- 19 EPA passed a regulation back in the early
- 20 nineties and set up two regulatory structures. One is
- 21 called RMERC and one is called IMERC. IMERC is
- 22 incineration, RMERC is retorting or roasting. Because we
- 23 retorting or roasting costs more, waste that is
- 24 contaminated with organics mostly heads towards
- 25 incinerators now, resulting in a huge emission problem

- 1 from hazardous waste incinerators.
- Now, we did recently move to regulate those
- 3 emissions, prior to this year, they were not regulated,
- 4 with max standards. And we did just recently settle a
- 5 consent degree on that, and I think some of our elemental
- 6 standards are 124 micrograms per dressing are in cubic
- 7 meters. So it's going to significantly reduce the amounts
- 8 of mercury coming out of hazardous waste incinerators but
- 9 not stop them altogether.
- 10 EPA is doing a lot of work right now at our
- 11 insistence on taking a look at what kinds of products
- 12 contain mercury, what kinds of consumer products contain
- 13 mercury. And actually if you go to our a web site which
- 14 is www.mercurypolicy.org you'll see a list there which
- 15 John Gilkinson from the Minnesota Office of Permit
- 16 assistance, I think is what they call it. It's basically
- 17 their DEP and regulatory agency in Minnesota has a rolling
- 18 list of all mercury bearing consumer products.
- 19 And he basically looks at that list every year
- 20 and he's constantly updating that list. So that's a very
- 21 important resource for the Department to have, because
- 22 we're talking about hundreds of products containing
- 23 mercury perhaps even thousands.
- 24 When I want to talk about now briefly is the
- 25 problem -- actually, the problem of mercury once it is

1 taken out of the stream of commerce. Because I recognize

- 2 that both nationally and internationally what's happening
- 3 with mercury is that if you go to buy mercury on the open
- 4 market right now, it sells for like a buck a pound. It's
- 5 basically waste, because we have too much of it. We have
- 6 a glut of mercury on the market.
- 7 So when we go to pull mercury out of consumer
- 8 products and we go to quote unquote "recycle it", actually
- 9 a lot of that stuff ends up either getting disposed of in
- 10 incinerators or it ends up going to third world countries.
- 11 And I'll give you a couple of examples. Kansas
- 12 had a household -- they had a mercury round up through
- 13 their household hazardous waste collection system a couple
- 14 of years ago. And one of the many conferences I've been
- 15 to on mercury, the regulator talked about how they had a
- 16 clock that was made with mercury as the weight in the
- 17 clock.
- 18 The clock had been in this church for 100 years.
- 19 And during this mercury collection, they collected the
- 20 mercury in the clock and did this huge public outreach
- 21 campaign in Kansas. They had mercury monster. They
- 22 collected mercury in the science labs. And the bottom
- 23 line is what happened to that mercury is that it went to
- 24 the cement kiln in Shawnee, Kansas and was burnt.
- 25 So you had mercury that was in a clock, a glass

1 clock, and it was taken out and it was burned and sprayed

- 2 into the environment, because this kiln didn't have any
- 3 type of mercury recovery.
- 4 Another point of my story, one of my many mercury
- 5 stories is that recently Maine because the Penobscot
- 6 Indian who were very upset that they could not eat the
- 7 fish in their rivers anymore, because of the mercury
- 8 contamination, the dioxin contamination, one of the 12
- 9 facilities in the country shut down, and they had a
- 10 mercury cell. So that the mercury in that mercury cell
- 11 had to be decommissioned. And so nobody wanted it here
- 12 because there's a glut of mercury on the market.
- 13 What they ended up doing was putting it on a ship
- 14 and shipping it to India where because of our
- 15 international contacts we were able to have the ship met
- 16 at the port and the dock workers refused to unload the
- 17 ship. But that ship was headed for India to make
- 18 thermometers that would have been imported back into this
- 19 country as thermometers.
- 20 So we really have this problem in this country as
- 21 well as internationally with mercury when it is pulled out
- 22 of the stream and what we're going to do with it.
- Now, I know you heard testimony today from the
- 24 Dental association and the land manufacturers and there's
- 25 quite a few folks actually that have industries that use

- 1 mercury in products that aren't here represented and
- 2 haven't been represented very well in the whole scheme of
- 3 things.
- 4 But the issue of, if you're going to regulate
- 5 mercury, which I believe we need to, we need to regulate
- 6 mercury in the consumer products, because this mercury is
- 7 ending up either in the air or in landfills. And while we
- 8 haven't seen mercury in landfill leachate and would not
- 9 expect to see that leachate because it volatilizes.
- 10 Now, I know this is not the Waste Board, but a
- 11 couple years ago we did pass a federal regulation to max
- 12 standards on landfills, and all landfills now over a
- 13 certain size and age are supposed to have soil vapor
- 14 extraction systems on them, which is basically sticking a
- 15 straw in the landfill and sucking out the gases.
- None of those -- most of those landfill gas
- 17 collection systems are just simply flare, just like soil
- 18 vapor extraction systems at Superfund sites, none of them
- 19 have any kind of controls for mercury.
- Now, there are some estimates from EPA that say
- 21 that landfills, municipal solid waste landfills after all
- 22 the match standards are done on mercury, those landfills
- 23 are going to be the most significant source of mercury in
- 24 the environment, because of all the consumer products
- 25 including the lamps and other things that are being

- 1 disposed of, mercury bearing consumer products that are
- 2 being disposed of in landfills so it's a very significant
- 3 issue.
- 4 The State of California needs to divert as much
- 5 mercury bearing waste as it can possibly capture in the
- 6 universal waste rule or in other regulations out of
- 7 landfills and into either being completely recycled, which
- 8 some of the lamp manufacturers. We do have a lamp
- 9 recycling infrastructure in California that's better
- 10 developed than most other states.
- 11 So California actually has less of an excuse than
- 12 a lot of other states not to be recycling the lamps at
- 13 least.
- 14 But we still have this problem of when we start
- 15 pulling all off this mercury out of the stream of commerce
- 16 what's going to happen to it. Now, the Defense National
- 17 Stockpile Center which I have all these great slides from
- 18 a cool presentation that the Defense National Stockpile
- 19 Center did on their stockpiles.
- 20 There are mercury stock piles that the Department
- 21 of Defense keeps for the military, because of military
- 22 means, which they did not need the mercury anymore and
- 23 started selling it on the open market, which further drove
- 24 the price of mercury down.
- Now, many of the states that are being impacted

- 1 by fish consumption advisories are asking the Department
- 2 of Defense or basically force the Department of Defense to
- 3 stop selling mercury. And one of the ideas that has been
- 4 bantered about and, in fact, we have a bill in Congress on
- 5 it, is to take all this excess mercury that we collect
- 6 from household hazardous waste collection programs, we
- 7 collect from Kansas and store it with the mercury
- 8 stockpiles until we can figure out -- as an interim
- 9 solution, until we can figure out a long-term mercury
- 10 stabilization program.
- 11 And right now, just so that you understand, there
- 12 really is no long-term strategy for mercury stabilization.
- 13 There are some technologies that are looking at a
- 14 amalgamation, some technologies that are looking at
- 15 different kinds of ceramic bonding. Most of these are
- 16 driven by the Department of Energy, but an interagency
- 17 task force that used to exist between EPA and DOE and DOD
- 18 lost funding a couple of years ago and has not been
- 19 reinstituted yet.
- 20 So the State of California because of its size,
- 21 because we're the seventh largest economy in the world and
- 22 because we have ten percent of the population of the
- 23 country, may want to think about what it's going to do or
- 24 what's going to happen ultimately to the mercury that we
- 25 collect, because it's not like, you know, we're Delaware

1 or we're, you know, Wyoming. We're a very, very large

- 2 part of the national picture.
- 3 We may want to think about, you know, supporting
- 4 these interim storage idea, although I had a cool slide
- 5 that showed you that all the sites are all east of the
- 6 Mississippi River. All of the storage sites Indiana,
- 7 Texas, Ohio, and New Jersey. So they're all on the east.
- 8 There's nothing here. I'll give you guys copies of this,
- 9 but there's nothing in the west at all.
- 10 So right now the mercury stored in steel flasks
- 11 and wooden pallets with medal catch trays is inspected and
- 12 has security measures in place as well as they are
- 13 monitoring the equipment. And they over pack it and
- 14 repack it as they have to.
- I want to stress that the problem of long-term
- 16 mercury storage is really as challenging a problem as
- 17 long-term storage of nuclear waste. The country that's
- 18 most progressive on this issue is Sweden. And Sweden is
- 19 looking at subseabed disposal for their nuclear fuel rods,
- 20 and a deep geological repository similar to Yuka Mountain
- 21 for their mercury. It's very expensive. They're planning
- 22 to amalgamate it and put it into a deep geological
- 23 repository.
- 24 And they came to the conference I was at a couple
- 25 of years ago and were looking to the United States to help

1 them come up with a better idea, because the releases from

- 2 that repository were modeled to be too high. And we are
- 3 holding a conference which we're helping to organize this
- 4 next spring in New England, which is a conference on
- 5 mercury, stabilization and retirement and interim storage
- 6 solutions.
- 7 So I'm bringing to you a couple of different
- 8 opinions and a couple different problems. One the problem
- 9 of mercury and the body burdens that we're facing and the
- 10 potential health effects are enormous. I know that Lena,
- 11 my colleague from Clean Water Action talked about the most
- 12 recent exposure study we have is actually done by a
- 13 newspaper in Mobile Alabama, where I was just at a couple
- 14 of days ago actually, showed that, you know, exposures are
- 15 higher than we think they are.
- 16 Every time we go and look actual exposure data,
- 17 we go measure blood serum levels or we measure cord blood
- 18 or we, you know, take a look at body burden measurements
- 19 and tissue, we find shockingly that exposures are much
- 20 higher than are safe.
- 21 The CDC reports says that 60,000 children are
- 22 being born a year impaired from mercury exposure from
- 23 exposure in the womb. As, you know, we've been trying to
- 24 get a breast milk monitoring program in California. We
- 25 have no idea what the breast milk monitoring program would

- 1 say about mercury exposure, but we know because of its
- 2 broad concentration factor we certainly can find it, we
- 3 don't what levels that we'd find.
- 4 So the Air Board is moving under AB 25, the
- 5 Children's Environmental Protection Act to regulate
- 6 mercury more closely. We're cracking down on mercury
- 7 emissions from stationary sources of air pollution through
- 8 MAC standards. In fact, we recently won a very important
- 9 decision nationally on the standards saying that because
- 10 cement kilns, which are a major source of mercury,
- 11 probably one of the most major sources of stationary
- 12 emissions in California, because we do not have a lot of
- 13 coal fired power plants, are cement kilns, because they
- 14 burn large amounts of coal and they're burning limestone,
- 15 which has mercury trace elements in it.
- 16 And the when MAC standards for cement kilns were
- 17 promulgated, there was no standard promulgated at all for
- 18 mercury. We got the court in Washington D.C. The reverse
- 19 that and said that they had to regulate all HAPS from --
- 20 if a source was emitting a HAP, and you didn't regulate
- 21 it, you need to go back and regulate it. But this is
- 22 going to take a very long time obviously, but that's good
- 23 news.
- So, in summary, we definitely support the
- 25 regulation on mercury bearing consumer products. How the

1 Department decides to regulate things like emissions to

- 2 POTWs, waste discharge POTWs, we really believe that
- 3 because the Waste Board is most involved in the collection
- 4 with household hazardous waste and because the water
- 5 boards are involved with discharges from POTWs that the
- 6 whole problem of mercury and mercury emissions into the
- 7 land, air and water in California would be a perfect
- 8 opportunity for an interagency task force.
- 9 It's the reason CalEPA was put together. It's
- 10 the ten year anniversary of CalEPA. It would be a
- 11 wonderful thing to see an interagency task force. Of
- 12 course, you know one of my first great loves in toxics is
- 13 persistent bioaccumulative toxins, but if you could start
- 14 with mercury I would be very happy.
- And, you know, I would be happy to help, in any
- 16 way, to support that. And that as part of that, I think
- 17 California really needs to look at what it's going to do
- 18 with all this mercury. Right now there's a lot of mercury
- 19 that gets treated back and forth across the border.
- One of the best looks that we have on a very
- 21 difficult topic is the whole issue of hazardous waste
- 22 transport going across borders. There's a Texas Policy
- 23 Center study under NAFTA that was recently done, and
- 24 there's also CDC report, the Commission on Environmental
- 25 Cooperation has a mercury action plan for Canada, United

- 1 States and Mexico. And it's done quite a bit of work in
- 2 looking at mercury going back and forth across the Mexican
- 3 border between United States and Mexico. And a lot of
- 4 that, of course, is the California border.
- 5 So there's a real opportunity there for
- 6 California to take a policy lead in looking at the export
- 7 and import of mercury trading and also taking a look at
- 8 interim storage.
- 9 With that, I thank you for the opportunity to
- 10 address you today. I might say a couple of things. I
- 11 wasn't here for all the presentations, but having fought
- 12 with the lamp manufacturing industry nationally and in
- 13 California for four years and having them say that they're
- 14 so interested in protecting the environment, I have to
- 15 sell you it made me gag, because we have been fighting to
- 16 get them to put a simple thing that says Hg on their lamps
- 17 letting consumers now that the lamps that are in their
- 18 homes, and are in their businesses contain mercury and
- 19 should not be broken and need to be recycled, and they
- 20 have been very uncooperative with that.
- 21 So it's very disingenuous for them to come to the
- 22 regulatory agency that is now trying to decide to regulate
- 23 them and say what great guys they are and how wonderful
- 24 they are about protecting the environment.
- 25 So all mercury bearing lamps need to be

- 1 regulated. I think the lamp industry needs to get on
- 2 board with this, because I know a lot of people who are
- 3 trying to protect public health and the environment are so
- 4 frustrated with them, we're basically in the position now
- 5 of trying to fund research on nonmercury bearing lamps,
- 6 because we simply cannot get them into the regulatory
- 7 system. We cannot stop them from, you know, burping and
- 8 spurting into the environment and people's home.
- 9 And mercury from the dental is a very significant
- 10 issue. There's new technologies coming along that I know
- 11 EPA is helping to work on that's going to be able trap
- 12 More and more mercury from waste water, and I think that's
- 13 a very significant issue especially when you're working on
- 14 fish consumptions advisories in basically all the major
- 15 waters in California, and some of that can be attributed,
- 16 of course, to dental amalgam and the fines.
- 17 So thanks very much.
- 18 DIRECTOR LOWRY: All right, thank you very much
- 19 for coming.
- 20 What I'd like to do next is move to the public
- 21 comment part of the program. And I have six speaker
- 22 request forms, one from Steve Arita and I understand you
- 23 don't need to comment.
- 24 And then the next person I can read his first
- 25 name David, and then Arrueta, A-r-r and then I can't read

- 1 the remaining.
- 2 MR. ARRUETA: Pass too.
- 3 DIRECTOR LOWRY: You're going to pass too, all
- 4 right. Robert Gillette is he here?
- 5 MR. GILLETTE: I am.
- 6 DIRECTOR LOWRY: All right, you'll be first
- 7 followed by Bud Hoekstra, is he here? All right.
- 8 Followed by Peter Weiner and Mr. Craig Johns will get the
- 9 last public word, and Jody Sparks if you'd like to comment
- 10 as well, you'll get the last word because you didn't fill
- 11 out one of these.
- 12 We're well within our expected or anticipated
- 13 time to close, but I would still urge you to make your
- 14 comments succinct, brief, and to the point, if you can do
- 15 all that.
- So please start.
- 17 MR. GILLETTE: Is this on?
- 18 DIRECTORY LOWRY: Yes, it is.
- 19 MR. GILLETTE: Thank you. My name is Bob
- 20 Gillette and I'm here today representing the TRITAC as the
- 21 co-chair of the Land Committee. TRITAC is a California
- 22 based organization comprising members of public agencies
- 23 and other professionals responsible for wastewater
- 24 treatment.
- 25 TRITAC is an advisory group that recruits the

- 1 California Association Of Sanitation Agencies, the
- 2 California Water Environment Association and the League of
- 3 California Cities.
- 4 DIRECTOR LOWRY: Welcome.
- 5 MR. GILLETTE: Thank you. The constituency base
- 6 collective serves most of the seward population of
- 7 California by treating and managing more than six million
- 8 dollars wet tons of biosolids or sewage sludge every year.
- 9 The vast majority of the tonnage of biosolids is currently
- 10 being beneficially recycled.
- 11 TRITAC shares the DTSC's concerns regarding the
- 12 problems of mercury contamination in California's
- 13 environment that is a part of the cause of the disposal of
- 14 mercury containing wastes that are currently regulated as
- 15 a hazardous wastes.
- In fact, members of our association have been
- 17 very active in pushing for SB 633 and trying to help that
- 18 major problem with water pollution.
- 19 TRITAC also shares DTSC's support of pollution
- 20 prevention, recycling and promotion and the use of mercury
- 21 alternatives as methods of providing additional
- 22 environmental and public health safeguards for the
- 23 discharge of mercury.
- 24 The discharge of mercury to California's
- 25 environment from biosolids land applications is regulated

 $1\,$ by the federal on 40 CFR 503 regulations and by the State

- 2 of California Title 22, the State Water Resources Control
- 3 Board sites specific requirements, and the State Water
- 4 Resources Control Board general order for land application
- 5 of biosolids recently adopted.
- 6 The risk assessment related to the environmental
- 7 exposure of mercury and biosolids measured in terms of
- 8 lifetime chronic exposure has been performed by the
- 9 Environmental Protection Agency during the development of
- 10 the 503 regulations. The 40 CFR 503 regulations were
- 11 developed over years of evaluation using risk assessment
- 12 methodologies developed by the U.S. EPA. These
- 13 methodologies focused on various potential pollutants and
- 14 14 pathways that might be used for human, animal and other
- 15 impacts on the environment.
- Development of the 40 CFR 503 Regulations
- 17 involved an extensive review of individual pollutants and
- 18 the use of hazard indices and the assessment of the worst
- 19 case exposure conditions to develop numerical limits for
- 20 biosolids that would assure protection of public health
- 21 and the environment under proper management conditions.
- 22 In fact, the worst case condition for mercury was
- 23 assuming that a young child would, from the year of one
- 24 till the year of six consume a significant amount of
- 25 biosolids every day for that period of time, in addition

- 1 to other mercury contaminants over their lifetime.
- Pursuant to the present 22 CCR and the DTSC uses
- 3 various adopted criteria to determine whether biosolids
- 4 are classified as hazardous waste. These include the
- 5 testing for toxicity, persistent and bioaccumulative toxic
- 6 substances ignitability, reactivity and proclivity.
- 7 Biosolids that contain a substance that exceeds
- 8 either a list of soluble threshold and the STLCs or a
- 9 listed threshold limit is deemed to be hazardous waste and
- 10 cannot be land refined.
- 11 Very few, only nine tons of it, in 1999,
- 12 according to DTSC's listing of the biosolids in
- 13 California -- of six million tons produced in California
- 14 were classified as hazardous. And, in fact, to my
- 15 knowledge none of that was classified as hazardous as a
- 16 result of mercury.
- 17 The State Water Resources Control Board's general
- 18 order added additional mitigation measures to protect
- 19 against potential impacts of heavy metal loading in
- 20 addition to those found in 40 CFR 503.
- 21 In determining that land applications of
- 22 biosolids is safe, the State Board developed a
- 23 comprehensive Environmental Impact Report on the general
- 24 order that reviewed not only the 40 CFR 503 regulations,
- 25 but substantial amounts of biosolids related to scientific

1 evidence and literature published since the adoption of

- 2 the 503 regulations.
- 3 The General order required that cumulative
- 4 loading limits for heavy metals, including mercury, at
- 5 land Application sites include the natural levels of heavy
- 6 metals that occur at the site before application of the
- 7 biosolids.
- 8 The inclusion of natural levels of heavy metals
- 9 that occur at the site tight before the application of
- 10 biosolids is not added into the cumulative metal load
- 11 calculations in 40 CFR 503.
- 12 If a biosolids products is considered hazardous
- 13 according to the California CCR, the general order would
- 14 also preclude its land application.
- 15 TRITAC is concerned that the State of California
- 16 would experience and extreme burden on Class 1 landfill
- 17 capacity at an warranted cost if DTSC regulates all
- 18 mercury containing wastes, including biosolids, maneurs,
- 19 municipal solid wastes, rain waste, et cetera as hazardous
- 20 as proposed in the October 2001 draft mercury report.
- 21 TRITAC has strongly and consistently supported
- 22 the development of regulations based on sound science. As
- 23 such, DTSC supports your option number 4, which would
- 24 require the development of new hazardous waste regulatory
- 25 threshold members.

```
1 This option would require DTSC to develop new
```

- 2 regulatory thresholds, based on the current science. As
- 3 such, the basis of current thresholds, the STLC, the TTLC
- 4 would need to be reexamined.
- 5 TRITAC recommends that since 1984 the science has
- 6 become more sophisticated in determining cleanup levels
- 7 and public health goals for mercury by using modeling and
- 8 risk assessments. TRITAC agrees that in devising
- 9 appropriate waste reuse and disposal scenarios to develop
- 10 a new regulatory threshold would be subject to a lengthy
- 11 debate and controversy. But the development of a science
- 12 based threshold for mercury would be the appropriate
- 13 regulatory approach.
- 14 DTSC should not back away from determining an
- 15 appropriate or long-term management scenario just because
- 16 it may become subject to lengthy debate and controversy.
- 17 It is only through the development of an
- 18 appropriate threshold number for mercury that DTSC can
- 19 defensively address mercury emissions originating from
- 20 waste.
- 21 Such an approach would not delay promotion of
- 22 mercury recycling and pollution. Such programs can be
- 23 implemented concurrently and with a threshold development
- 24 under Option number 4.
- While option number 4 is the best option for

1 management of mercury containing waste, TRITAC recommends

- 2 that Option 3, the regulation of all mercury containing
- 3 consumer products, when they are discarded as hazardous
- 4 waste, should be employed to deal with products to which
- 5 mercury was intentionally added.
- 6 Option 3 is the right approach for many products
- 7 where mercury testing is difficult or unnecessary due to
- 8 high mercury content. These products should be named as
- 9 listed hazardous wastes when discarded. Since they are
- 10 listed wastes, it should be made clear that they must be
- 11 removed from a larger product in vehicles if that larger
- 12 product is not being managed as a hazardous waste.
- 13 And we have developed some detailed
- 14 recommendations for the implementation of option number 3
- 15 that would provide it in writing.
- With that, we'd be happy to help in any way that
- 17 we can, with information or data. Please feel free to
- 18 contact us if we can help.
- 19 DIRECTOR LOWRY: All right. Thank you very much
- 20 for coming, and thank you for submitting your detailed
- 21 recommendations as well.
- 22 All right we have Bud Hoekstra. Did I pronounce
- 23 your name right, sir?
- MR. HOEKSTRA: Yes you did. You did very well,
- 25 thank you.

1 Thank you very much. I'd like to say at least

- 2 pass along a compliment about this report. I've read
- 3 about a thousand reports in the last 20 years and this
- 4 probably ranks in the upper ten. It was a very excellent
- 5 job. I do appreciate the open access.
- 6 At home I have a -- on my personal library shelf,
- 7 I have a formulary and price list from the drug companies
- 8 Squib. It's dated 1906. It has four pages of mercury
- 9 compounds that were used as medicines, including one
- 10 popular children's tonic that contains strychnine, lead,
- 11 mercury and a couple other dangerous compounds.
- 12 But there is no mention of methyl mercury. And
- 13 methyl mercury is rather new to the environment. It's
- 14 something that we've actually created by creating these
- 15 reservoirs, which are huge biomethylators just hugh
- 16 methylation vats.
- 17 And methyl mercury is a different species. It's
- 18 found like any other species of mercury. And there is
- 19 some important things about methyl mercury that I'd like
- 20 you to address.
- 21 I want to point out that methyl mercury is fetal
- 22 toxic. And fetal toxicity is something new to the world
- 23 of toxicology. And it's not covered very well in the risk
- 24 assessment that was handed to you by the OEHHA.
- 25 And I want to point out that there -- that the

- 1 RFD, the reference dose that's discussed in here is not
- 2 one that's accepted by most of the scientific community.
- 3 The Reference Dose in here is 0.1 micrograms per kilogram
- 4 per day, which is basically one hundred thousandths. And
- 5 I want that figure to stick in your mind once.
- In 1993 -- let me step back once where that 0.1
- 7 that one hundred thousandths come from. In '89, the ePA
- 8 set that figure at 0.3 or three hundred thousandths and
- 9 there was big outcry about that.
- 10 In '97, it was set at 0.1, which is one hundred
- 11 thousandths, and there was an outcry about that in the
- 12 scientific community.
- 13 And so the National Research Council was asked to
- 14 see if that was scientifically justifiable, not that it
- 15 was the best science or that it was the best RFD, but it
- 16 was whether it was justifiable.
- 17 And in 2000, they let it squeak through. But
- 18 there was a lot of malcontent with that figure in the
- 19 scientific community.
- In 1993, for example, in the peer review
- 21 literature, Stern took a look at animal and human studies
- 22 and they looked at the same studies that came -- that the
- 23 EPA used, the Iraqi studies to come up with their one
- 24 hundred thousandths, and they set the figure at 70
- 25 thousandths, which was much lower.

1 Gilbert and Grant Webster in 1995 looked at the

- 2 same Iraqi studies and came up with a range of possible
- 3 RFD's between 25 thousandths and 60 thousandths. Mind
- 4 you, the EPA uses 100 thousandths and this is what you use
- 5 in here.
- In 1996 -- excuse me 1995, Zilcof studied
- 7 prenatal exposures in animals, and he came up with an RFP
- 8 of 10 thousandths. Mind you the EPA uses 100 thousandths.
- 9 In 1996, RICE came out with using animal data
- 10 with 50 thousandths. That's half of what's used in here.
- 11 And, in general, the scientific Community does not agree
- 12 with that RFD. And there are some reasons for it.
- 13 The issue is the toxicity to the fetus. There's
- 14 hardly any chemical known which can be as toxic as methyl
- 15 mercury. There is now conceded by the toxicology
- 16 community that a mother can ingest an exposure to methyl
- 17 mercury and show no signs of mercury poisoning. And the
- 18 fetus, when it develops, can show signs of severe mercury
- 19 poisoning from that same maternal exposure.
- 20 And so you're dealing with a very unusual species
- 21 here with methyl mercury. And the idea is to control this
- 22 from affecting the larger population. Now, the fetus
- 23 probably something that's not of -- you know, there's
- 24 nobody in this room here that is carrying that organ, but
- 25 it is of concern to the larger society, since everyone

- 1 here in this room starts out as a fetus.
- So it doesn't matter. And if the risk
- 3 assessments are wrong, and there's a good chance that they
- 4 are, there's other implications here for methyl mercury in
- 5 the environment and the exposure. For instance, legacy
- 6 sources of mercury, most of those legacy sources are not
- 7 covered in here.
- 8 Legacy sources are basically exempt by law as
- 9 hazardous waste. And we'd ask you to take a look at a
- 10 national forest, like Tahoe national forest whether
- 11 there's thousands of these old historical mining sites
- 12 with mercury that are exempt. You wonder whether this
- 13 plan will work to control that methyl mercury that problem
- 14 that we're now experiencing.
- 15 In fact, I'll go as far as to that methyl mercury
- 16 may be Anthrax that we strip we all future generations.
- 17 And I have my doubts whether this plan, this strategy here
- 18 will actually work to control that.
- I wanted to throw one other matter before you.
- 20 I've heard the California Dental Association speak. I
- 21 suggest that you take a look at the national clearing
- 22 house for mercury amalgams. I think you can find on the
- 23 Internet, but they do put out a newsletter. And one of
- 24 their claims is that the ADA, the American Dental
- 25 Association, gets royalties from the mercury containing

- 1 amalgams.
- 2 And you might also run just a quick literature
- 3 check on some of the studies that come out on dentists'
- 4 exposures to amalgams. You know, it's one huge study of
- 5 several thousands people in China, that is a dentist in
- 6 China that showed quite a few side effects from exposure
- 7 to amalgam vapors, particularly the loss of short-term
- 8 memory.
- 9 Thank you very much.
- 10 DIRECTOR LOWRY: All right, thank you for sharing
- 11 those thoughts with us, and thank you for coming down from
- 12 San Andreas, I guess.
- 13 Peter Weiner is next on the list.
- 14 MR. WEINER: Thank you. I, too, want to
- 15 congratulate the Department on one of the best studies I
- 16 have ever seen come out of the department.
- 17 I have a few isolated things to say or disjointed
- 18 things to say responding to the things that other people
- 19 have said today.
- 20 I guess the first thing to talk about is what the
- 21 Department can do and not do. The fact that the
- 22 Department cannot control the entire mercury problem is
- 23 obviously not a reason not to take action.
- 24 There is a statutory level exemption in
- 25 California, which may be unfortunate, but there is one.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 And the Department doesn't have some of the powers and

- 2 some of the other CalEPA agencies do have.
- 3 And while an interagency task force might be the
- 4 wonderful thing to come out of the Department's efforts,
- 5 it is no reason for the department to slow down. I think
- 6 to the contrary, the testimony you heard from other
- 7 agencies is full speed ahead, because it assists them,
- 8 especially with the Water Board, in controlling ongoing
- 9 contributions of mercury into the environment.
- 10 The second thing I wanted to say is that dirt is
- 11 an obvious issues, dirt and biosolids coming out of this
- 12 discussion today. And it poses more problems I think,
- 13 than consumer products or other areas where we have
- 14 intentionally added mercury.
- 15 In looking at that, and I think it will take the
- 16 Department more time to look at dirt, contaminated soils
- 17 issues and biosolids than it does to look at some of the
- 18 other issues. I would like to say that I think Mr. Jones
- 19 tried to correct himself after his first testimony to say
- 20 that one looks not only at human health issues in setting
- 21 a cleanup level but at ecological issues.
- 22 And clearly if there is a prospect for erosion as
- 23 he put it or other contributions to water, are the fact
- 24 that we have elemental mercury in the land doesn't mean it
- 25 won't convert to methyl mercury later on. That's been the

- 1 whole problem.
- So I understand his financial concern about ARARs
- 3 but nevertheless, as you set your limits at some point,
- 4 one would suspect that you're going to do more data
- 5 analysis as to what the contribution of soils are to the
- 6 actual problems you're trying to solve.
- 7 Similarly, when Mr. Mumley was talking about
- 8 there being a difference in his concerns for TMDLs versus
- 9 your concerns of what's hazardous and hotspots.
- 10 Obviously, you're changing those regulations to address
- 11 contributions that might violate the TMDL or water quality
- 12 objectives that Mr. Howard was talking about is what's
- 13 important here, not what you regulate at the present.
- 14 Moving on. There was some talk about encouraging
- 15 source reduction. I think that as one of the witnesses
- 16 showed you in a demonstration, technology such as -- it's
- 17 only one of the technologies, such as that very slim
- 18 fluorescent tube, that T-5, which substitutes for the
- 19 light of two of those larger tubes, is one great way to
- 20 obtain source reductions since you're cutting the amount
- 21 of mercury virtually in half.
- These issues are terrific. They're probably not
- 23 ones that are within the purview of the Department to
- 24 promote, in that sense, because as many of the speakers
- 25 have said any level of the mercury is going to be

- 1 hazardous relative to the .2 micrograms per liter, I
- 2 believe, of the water quality objective in sediments, and
- 3 17 parts per trillion water quality objective that the
- 4 Water Board was talking about.
- 5 So whatever kinds source reduction and energy
- 6 efficiency that we can provide through fluorescent lamp
- 7 encouragement, so as to cut down on other emissions of
- 8 mercury from powerplants and so on, is probably something
- 9 that will be encouraged hopefully by the Energy Commission
- 10 and other authorities. This department's authority and
- 11 mandate is to protect human health and here especially,
- 12 the environment.
- 13 I was taken by two things. One was the hazardous
- 14 waste identification options table 6.1 on pages 92 and 93
- 15 and then by the very cogent testimony from the
- 16 representative from TRITAC.
- 17 In going down the waste characterization issues
- 18 of several of the these waste types, the Department says
- 19 the characterization issue is that mercury is quote
- 20 "diluted" unquote when the weight of the whole object is
- 21 considered.
- Well, it seems to me that this is something that
- 23 we thought we were going to get away with -- getaway from
- 24 a long time ago when we said that solutions really -- or
- 25 dilution was not the solution to pollutants. Here we have

- 1 instances where because of the Department's way of
- 2 characterizing concentrations, you've allowed just that.
- 3 It seems to be a relatively simple idea to regulate all
- 4 consumer products which intentionally add mercury.
- 5 The rather detailed presentation or detailed
- 6 recommendations for Option 3 that TRITAC presented seems
- 7 to me to be a fairly decent discussion of these items,
- 8 because the issues that you raised in here about
- 9 measurement devices, such as barometers and manometers,
- 10 the switches in automobiles, that switches appliances and
- 11 lamps are all items that can be easily segregated from the
- 12 rest of the waste stream.
- 13 And I say easily, because it isn't, for example,
- 14 like mercury painted the wood. It's hard to separate the
- 15 wood from the mercury paint. It's a lot easier to
- 16 separate a switch. That's a lot easier to separate a
- 17 lamp.
- 18 These issues don't present issue, but
- 19 feasibility. And, I must say, that what you do is enable
- 20 you to reduce the load on POTW which reduce the load on
- 21 sediments in the bay in a way that you can look at either
- 22 over time or immediately with modeling to determine
- 23 whether that will do the trick. For example, to reduce
- 24 the mercury in biosolids so sufficiently, so that you do
- 25 or don't have to regulate them. Those are the kinds of

1 issues that you can deal with once you address these more

- 2 concentrated sources.
- 3 While looking at the issue, you also don't get
- 4 into the itch you of zero. I think there is probably an
- 5 issue of zero connected with soils and biosolids that
- 6 isn't there for consumer products, where there's been
- 7 pretty fairly good unanimity today that those are things
- 8 that need to be diverted from contributions to the
- 9 environment.
- 10 That's all I have and thank you very much.
- 11 DIRECTOR LOWRY: All right. Thank you for
- 12 sharing your thoughts.
- 13 Craig Johns, I think, is next, Executive Director
- 14 of Partnership for Sound Science and Environmental Policy.
- 15 And we're honored to have him as a former chairman of the
- 16 San Francisco Bay Regional Water Quality Control Board.
- Welcome.
- 18 MR. JOHNS: Thank you very much, Mr. Director.
- 19 The Partnership for Sound Science and
- 20 Environmental Policy is an association of municipal
- 21 treatment agencies, businesses, trade and labor groups
- 22 throughout the State, which supports the development of
- 23 environmental policies that are based on sound science and
- 24 reasonable regulatory approaches.
- 25 I'd like to add our voice to the seemingly

- 1 growing list of folks who read this report and were
- 2 impressed by it. I think it is a very interesting and
- 3 impressive step in trying to understand the life cycle
- 4 dilemma of mercury in this State.
- 5 I was struck by a couple of the factoids that I
- 6 pulled out in reading it the other day. One of which was
- 7 that domestic mercury consumption has been reduced
- 8 eight -- more than -- almost 82 percent from 1976 to 1998,
- 9 and that landfill disposal of mercury has also been
- 10 reduced some 61 percent from 1990 through 1996.
- 11 It seemed in reading this report that what one
- 12 was struck with is that we're hear talking about it
- 13 because of the bioaccumulative nature of mercury and some
- 14 of the fish advisories that have come throughout the State
- 15 and indeed the rest of the country. And truly I think as
- 16 the report points out, but really doesn't go into enough
- 17 detail on it and I would hope that the final draft will do
- 18 so, the real problem with mercury eroding into our waters
- 19 does not come from the landfill leaching, from aerial
- 20 deposition, although clearly there is that, it's from
- 21 these legacy sources from these abandoned mines.
- 22 And as I mentioned, the report does go into it a
- 23 little bit, but it doesn't really go into it in the kind
- 24 of detail, I think, that's warranted for a comprehensive
- 25 report on mercury.

1 One of the comments I think Ms. Williams made was

- 2 that this particular pollutant in this multimedia aspect
- 3 cries out for an interagency task force, and I certainly
- 4 would echo that and support that.
- 5 There's no way to deal with the mercury in the
- 6 different media, whether it's through TMDL or through your
- 7 jurisdiction authorities or the Air Board or the Waste
- 8 Board, without coming together to try to deal with this
- 9 problem.
- 10 So I would hope and recommend that the final
- 11 draft -- or excuse me the final report in this particular
- 12 instance goes into more detail about the legacy
- 13 contributions throughout the State.
- 14 And then more importantly have an option that
- 15 goes to try to deal with that. I recognize that that has
- 16 nothing to do with your immediate standard setting
- 17 jurisdiction, but I believe that the Department is
- 18 involved in many dozen mine cleanups throughout the State,
- 19 where I presume mercury is one of the prime, if not the
- 20 sole contaminants.
- 21 And it seems to me that there ought to be some
- 22 connection between that area of the Department's
- 23 jurisdiction and this whole multimedia approach, and would
- 24 think that this report should do that.
- 25 Finally, if this is to be used and relied on by

- 1 folks as a good planning tool for the future, a policy
- 2 development tool, it seems that an estimate of the various
- 3 costs associated with these various options that are
- 4 presented here, particularly the one that's recommended as
- 5 the prime option for this draft report, needs to be dealt
- 6 with, so that local municipal governments, whether they're
- 7 sewage treatment facilities and agencies or folks dealing
- 8 with stormwater issues and mercury that's in the
- 9 stormwater, have an idea of what it's going to cost and
- 10 what kind of benefit is going to be achieved.
- 11 And with that, I thank you very much for the
- 12 opportunity to comment on the report.
- 13 DIRECTOR LOWRY: All right, thank you for coming,
- 14 and thank you for your comments.
- 15 Next we have Jody Sparks.
- Who do you represent today?
- 17 MS. SPARKS: I'll tell you. I'm representing the
- 18 Toxics Assessment Group. As the President of the Toxics
- 19 Assessment Group and the Executive Director of the
- 20 California Environmental Research Group, which is a
- 21 nonprofit organization.
- I just have two comments. First of all, there
- 23 was discussion among both the regulatory agencies that
- 24 were present and the business community on making
- 25 information available to you. For instance, one example

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 would be information regarding municipal landfills and if

- 2 they leak or don't leak.
- 3 Well, the concern that I have is that unless you
- 4 prepare a docket, of sorts, on the information that's
- 5 submitted, some will not have the opportunity to rebut the
- 6 arguments that are made. And so I think a docket similar
- 7 to, I hate to use the term, but we sort of had on our
- 8 issue, would be something that would be helpful.
- 9 DIRECTOR LOWRY: All right.
- 10 MS. SPARKS: And secondly, I had commented
- 11 previously on the universal waste rule when it discussed
- 12 fluorescent bulbs. And there was a document that normally
- 13 isn't part of the public record, it's like an economic
- 14 analysis. It's sort of separate. And this was like the
- 15 first part of the year.
- And I recall a product endorsement. And I would
- 17 hope that as you go through this process, that you do not
- 18 endorse products by name. I don't believe that the
- 19 Department should be in that business.
- 20 DIRECTOR LOWRY: All right. So your point is
- 21 that when we did the universal waste rule, this Department
- 22 enforced a particular commercial product?
- MS. SPARKS: I believe so.
- 24 DIRECTOR LOWRY: All right.
- MS. SPARKS: That's the end.

1 DIRECTOR LOWRY: All right. Thank you very much,

- 2 and your docket comment is particularly appropriate.
- 3 What I'd like to do now is, is there anyone else
- 4 who would like to address the group?
- 5 And seeing no one, let me do a couple things.
- 6 First, I'd like to thank everyone for coming and
- 7 particularly I'd like to thank our reporter, and staff
- 8 including Diane Fowler who didn't get thanked earlier, but
- 9 you are one of the major laborers for getting information
- 10 out to get people here and putting things together.
- 11 And Corey Yep for writing the report, which has
- 12 been subject to such praise today. And Watson for sitting
- 13 next to me and passing notes and kicking me at appropriate
- 14 points.
- 15 Let me also say a couple of things that we will
- 16 do. We have scheduled additional public workshops on
- 17 this, which will follow a similar format. I have not
- 18 committed to being at those particular workshops. I may
- 19 go. I may not. It was my hope that we would get the bulk
- 20 of the comments here, but we still want comments from
- 21 other folks who were unable to come to Sacramento.
- 22 Those of you are who attended today, I should
- 23 assure that you you're welcome to come to these other
- 24 workshops, but you need not be there, if you don't want to
- 25 come. And the later workshops will not be an example of

1 they get the last word and you don't. All comments will

- 2 be taken in an equal fashion.
- 3 What I like about this format is that it tries to
- 4 obviate the propensity of government to decide, announce
- 5 and defend what we are attempting to do in this process,
- 6 which is to say we have a problem, what do you goes think
- 7 of this proposed solution, and put that together.
- 8 And then based on those comments have a formal
- 9 regulatory process which we hope will also not be a
- 10 decide, announce, defend, but it will be a true regulatory
- 11 process where we propose the regulation, take comments,
- 12 respond to those comments as appropriate, if in deed we
- 13 elect to go the regulatory route.
- 14 I have learned a lot today. I think the comments
- 15 we received have been very, very valuable. The
- 16 interchange I've had with people at the break and with
- 17 additional staff here is, I think, we confirmed that a lot
- 18 of ideas have been discussed and some weaknesses in our
- 19 draft have been noted, some strengths have been noted and
- 20 some additional proposed solutions have come forward.
- 21 So thank you very very much for engaging in this
- 22 process. I know it's not pleasant to spend a day in an
- 23 auditorium without a clock and without windows. Sometimes
- 24 we have to do that. And I look forward to everyone's help
- 25 in addressing this problem as we go forward.

```
1
             Once again thank you, and we'll see you next
 2 time.
 3
             (Thereupon the Department of Toxic
             Substances Control workshop was
 4
 5
             concluded at 4:20 p.m.)
 6
 7
 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
```

1	CERTIFICATE OF REPORTER
2	I, JAMES F. PETERS, a Certified Shorthand
3	Reporter of the State of California, and Registered
4	Professional Reporter, do hereby certify:
5	That I am a disinterested person herein; that the
6	foregoing Department of Toxic Substsances Control workshop
7	was reported in shorthand by me, James F. Peters, a
8	Certified Shorthand Reporter of the State of California,
9	and thereafter transcribed into typewriting.
10	I further certify that I am not of counsel or
11	attorney for any of the parties to said workshop nor in
12	any way interested in the outcome of said workshop.
13	IN WITNESS WHEREOF, I have hereunto set my hand
14	this 6th day of December, 2001.
15	
16	
17	
18	
19	
20	
21	
22	
23	JAMES F. PETERS, CSR, RPR
24	Certified Shorthand Reporter
25	License No. 10063

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345